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FOREWORD

This book contains the subjects taught, at FILS, along many years,
by the authors in the first semester of Calculus. The main topics pre-
sented are: series of numbers, series of functions and power series,
Taylor formulas and the differential calculus of the functions of several
variables (partial derivatives, differential, local extrema). Some theo-
rems are completely proved, some proofs are only sketched and other
theorems are only stated, trying to keep a balance between theory and
practice.

We tried to be precise, to go to the point as straight as possible.
Standard exercises are added. The only prerequisite for the book is a
good knowledge of college mathematics but we recall many definitions
and facts to make the reading easier.

Any suggestion for improving the text will be welcome.
Acknowledgments. We thank FILS for giving, in the new curricu-

lum, the opportunity for a natural teaching of Calculus.

The authors
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Chapter 1

Sequences and Series of
numbers

1.1 Real numbers

As a general fact, we shall suppose the basic properties of the (usual)
operations (addition, substraction, multiplication, division) with real
numbers well known. We shall also suppose that the order relation
between reals and the idea of representing real numbers as points of a
line are familiar, too.
As for notation: IN will be the set of natural numbers, ZZ the set of
the integers, Q the set of the rationals and R the set of the reals.
We have the following strict inclusions: IN ⊂ ZZ ⊂ Q ⊂ IR.

We intend, in the following, to introduce some basic concepts con-
cerning the order relation. The notation for the order will be ” ≤ ”:
”x ≤ y” means ”x is less than y or equal to y”. Strict inequality x < y
means x ≤ y and x 6= y. As it is well known, the inequalities are also
denoted by ≥, > .

Definitions
Let A be a non empty set of IR (A ⊆ IR, ∅ 6= A).
A number b ∈ IR is an upper bound of A if x ≤ b for every x ∈ A.
A set having at least one upper bound is called bounded from above.
A number a ∈ IR is called a lower bound of A if a ≤ x for every x ∈ A.
A set having at least one lower bound is called bounded from bellow.
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4 CHAPTER 1. SEQUENCES AND SERIES OF NUMBERS

A set which is (both) bounded from above and from bellow is called
bounded. So the set A is bounded if there are a, b ∈ IR such that
a ≤ x ≤ b for every x ∈ A.
We shall consider the empty set ∅ as bounded by definition.

Exercise
Prove that a set A ⊆ IR is bounded if and only if there exists M > 0
such that |x| ≤M for every x ∈ A.

Remark
From now on we shall use the notations:
”iff” for ”if and only if”, ”∀” for ”for every”, ”∃” for ”there exists” and
”s.t.” for ”such that”.

Exercise
Prove that:
(i) Every finite set is bounded.
(ii) If A,B are bounded, then A ∪B is bounded.
(iii) If A ⊆ B and B is bounded, then A is bounded.

Definition
The number s ∈ IR is said to be the least upper bound (l.u.b.) of
A ⊆ IR if:
(i) s is an upper bound of A.
(ii) for every upper bound b of A one has s ≤ b.
We shall use the notation s = supA.

Exercise
(i) Prove the uniqueness of the l.u.b. of a set in case of existence.
(ii) Find the l.u.b. of the sets [0, 1) and [0, 1].

Definition
The number m ∈ IR is said to be the greatest lower bound (g.l.b.)
of A ⊆ IR if:
(i) m is a lower bound of A.
(ii) for every lower bound a of A one has a ≤ m.
We shall use the notation m = inf A.
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Exercise
(i) Prove the uniqueness of the g.l.b of a set in case of existence.
(ii) Find the g.l.b of the sets [0, 1) and [0, 1].

Remark
The l.u.b. (g.l.b.) is sometimes called also supremum (infimum),
explaining the notations above.

We can now state a fundamental fact about real numbers which we
accept as an axiom.

The L.u.b. Axiom
Every non empty, bounded from above subset of IR has l.u.b.

Remark
This axiom might not seem very intuitive. Loosely speaking the mean-
ing of it could be ”the real numbers fill a whole line, there are no
”holes”, etc.”
Maybe the following remark could help: it is easy to see that the defini-
tions above can be given in the set Q (we only need an order relation).
So we can ask if the L.u.b. Axiom holds if our ”universe” is the set of
rationals, i.e.: is it true that a non empty, bounded from above set of
rationals has a rational l.u.b. ? The answer is no. Think about the
set of non negative rationals of square less than 2, (see exercise 4).

Exercise
Every non empty, bounded from bellow subset of IR has g.l.b.

The following property is useful:
Proposition

Let A 6= ∅ be a set of real numbers. Then:
s = supA iff the following assertions are (both) true:
(i) s is an upper bound of A.
(ii) ∀α ∈ IR s.t. α < s , ∃xα ∈ A s.t. α < xα.
Proof First, let us suppose s = supA. We only need to prove the
condition (ii). If this would be false then one can find α ∈ IR, α < s,
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s.t. x ≤ α, ∀x ∈ A; but this is a contradiction (we have found an upper
bound of A strictly less than the least one).
Let now suppose that s satisfies conditions (i) and (ii). We only need
to prove condition (ii) in the definition of the l.u.b. Let b ∈ IR be an
upper bound of A. If b < s then using the condition (ii) we can find
xb ∈ A s.t. b < xb. This contradicts the fact that b is an upper bound
of A; so we have to accept that s ≤ b.

As a first application of the L.u.b. Axiom let us prove the following:
Theorem (Archimedes)

Let a, b ∈ IR, a > 0. Then there exists n ∈ IN s.t. na > b.
Proof Let us suppose, by contradiction, that na ≤ b,∀n ∈ IN and let
A = {na ; n ∈ IN}. Obviously A 6= ∅ and A is bounded from above (b
is an upper bound of A). Let s = supA (according to l.u.b. Axiom);
then s− a < s (because (a > 0) and by using the above proposition we
can find n ∈ IN s.t. s− a < na. Consequently this means s < (n+ 1)a,
which is a contradiction since (n+ 1)a ∈ A.

Corollary
IN is not bounded; take a = 1 above. And so is IR.

Exercises
1. Using Archimedes’ Theorem prove that if x, a ∈ IR, a > 0 then there
exists an unique n ∈ ZZ s.t. na ≤ x < (n+ 1)a.
Hint By applying Archimedes’Theorem to x ∈ IR and a > 0 one gets
m ∈ N s.t. x < ma. Analogously, there exists p ∈ IN s.t. −x < pa,
hence −pa < x < ma. It results that:

x ∈ [−pa, (−p+ 1)a) ∪ [(−p+ 1)a, (−p+ 2)a) ∪ ... ∪ [(m− 1)a,ma)

Moreover, since any two intervals (in the above union) are disjoints, x
must be in exactly one of them.

2. Prove that if a, b ∈ IR, a < b, then there exists x ∈ Q s.t.
a < x < b (one says that Q is dense in IR).
Hint Let a < b ; by applying Archimedes’ Theorem to 1 ∈ IR and
b − a > 0 there exists n ∈ IN s.t. 1 < n(b − a), hence 1

n
< b − a.
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According to the previous exercise applied to a ∈ IR and 1
n
> 0 there

exists m ∈ ZZ s.t. m
n
≤ a < m+1

n
; since m+1

n
∈ Q, the proof is over if

m+1
n

< b. This results from the inequalities:

m+ 1

n
− a ≤ m+ 1

n
− m

n
=

1

n
< b− a.

3. Using the fact that
√

2 ∈ IR \ Q, prove that if a, b ∈ IR, a < b,
then there exists α ∈ IR \ Q s.t. a < α < b, i.e. IR \ Q is dense in IR.
Remember that for two sets A,B, then A\B = {x; x ∈ A and x 6∈ B}.
Hint Let first observe that if r, s ∈ Q, s 6= 0, then r + s

√
2 ∈ IR \ Q.

Now let a, b ∈ IR and let apply Archimedes’ Theorem to
√

2 ∈ IR and
b − a > 0; it results that there exists m ∈ IN s.t.

√
2 < m(b − a),

hence ma +
√

2 < mb. Let n be the largest integer s.t. n ≤ mb, hence
n+
√

2 ≤ ma+
√

2 < mb. Since n is the largest integer s.t. n ≤ mb, it
results that ma < n+

√
2, so ma < n+

√
2 < mb; finally a < n+

√
2

m
< b

and n+
√

2
m
∈ IR \Q.

4. Let A = {p ∈ Q ; 0 < p, p2 < 2}. Prove that A is bounded in Q
(adapt the definitions of bounds to Q) and that A has no l.u.b. in Q.
Hint An upper bound of A is 2. We first prove that if it would exist
a rational r = supA, then r2 = 2. Indeed, if r2 < 2, then r ∈ A. Let
h ∈ IR s.t. 0 < h < 1 and h < 2−r2

2r+1
; then t = r + h has the properties:

r < t and t ∈ A, contradiction. If r2 > 2, then the number q = 1
r

+ r
2

has the properties: 0 < q < r and q2 > 2, contradiction. So r2 = 2. It
is well known that there is no rational with this property.

5. Let a ∈ IR be given. Show that a is the l.u.b. of the set of
rationals which are strictly less than a. Same for the irrationals. State
and prove the corresponding result for the g.l.b.’s.
Hint Let A = {x ∈ Q ; x < a}; then A 6= ∅ (why ?). Obviously a is an
upper bound of A; let m ∈ IR be another upper bound of A. If m < a
then there exists y ∈ Q s.t m < y < a (Q is dense), hence y ∈ A, which
is a contradiction, etc.

6. If A,B ⊆ IR are two non empty sets, then define
A + B = {x + y ; x ∈ A, y ∈ B}. Prove that if A and B are bounded
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from above, then so is A+B and sup(A+B) = supA+ supB.

7. Let ∅ 6= A ⊆ IR be bounded from bellow and let
−A = {−x ; x ∈ A}; prove that −A is bounded from above and that
inf(A) = − sup(−A).

8. Suppose A and B are two non empty sets of real numbers and
A ⊆ B. Prove that:
(i) If B is bounded from above so is A and supA ≤ supB.
(ii) If B is bounded from bellow so is A and inf A ≥ inf B.

9. Let A = { 1
n

; n ∈ IN, n 6= 0}, B = { 2x
x2+1

; x ∈ IR}. Prove that
A and B are bounded and compute inf A, supA, inf B, supB.

1.2 Cauchy sequences

Let us recall the notion of a ”sequence”.
Definition
Let X be a non empty set. A function f : IN 7→ X is called a sequence
of elements of X or shorter a sequence in X. The classical nota-
tion for a sequence is (xn)n, where xn = f(n). Sometimes we need to
consider functions defined only for n ≥ k, where k is a fixed natural;
we call them sequences, too. If (xn)n is a sequence in X, then xn is
called the term (of rank n) of the sequence.

Going back to the set IR we can state the following important:

Theorem (of nested intervals)
Let [a0, b0] ⊇ [a1, b1] ⊇ ... ⊇ [an, bn] ⊇ ... be a sequence of closed,
bounded intervals in IR. Then

⋂
n∈N

[an, bn] 6= ∅.

Proof Define A = {a0, a1, ..., an, ...} and B = {b0, b1, ..., bn, ...}; ob-
viously A and B are non empty sets. It is clear that A is bounded
from above and B is bounded from bellow (in fact they are both
bounded). Let a = supA, b = inf B. It is easy to check that a ≤ b and
[a, b] ⊆

⋂
n∈N

[an, bn].
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Remark
If the sequence (bn − an)n converges to 0 (see the following definition)
then

⋂
n

[an, bn] has only one element (prove it).

The notion of a convergent sequence of real numbers was studied at
school as well as computations of limits. We shall recall the basic defi-
nition of the limit, but we shall consider the elementary computations
with limits as known.

Definition
Let (an)n be a sequence in R. The number a ∈ IR is said to be the
limit of the sequence (an)n if:

(?) ∀ε > 0, ∃Nε s.t. ∀n ≥ Nε implies |an − a| < ε.

In this case we write lim
n→∞

an = a or an −→ a. A sequence having a

(real) limit is called convergent.

Remark
(i) If a ∈ IR satisfy the definition (?) (for a fixed sequence (an)n ) then
it is unique with this property; (that’s why we say ”the limit”, etc).
(ii) The geometric interpretation of the previous definition is: for every
interval (a− ε, a+ ε) it is possible to find (a natural number, or rank)
Nε such that for all n ≥ Nε, an ∈ (a− ε, a+ ε).
(iii) In (?) one can replace n ≥ Nε by n > Nε or |an − a| < ε by
|an − a| ≤ ε .

Definition
Define the distance between two real numbers as d(x, y) = |x − y|.
The definition (?) becomes:

(??) ∀ε > 0, ∃Nε ∈ IN s.t. ∀n ≥ Nε d(an, a) < ε.

(??) has the advantage of ”generality”: once one has a ”distance”, one
can define convergent sequences.

Exercise (the basic properties of the distance)
Prove that ∀x, y, z ∈ IR:
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(i) d(x, y) ≥ 0, d(x, y) = 0 ⇔ x = y
(ii) d(x, y) = d(y, x)
(iii) d(x, z) ≤ d(x, y) + d(y, z).

Let us now see how the L.u.b. axiom can be used to prove a very
useful result.
First remember that the sequence (an)n is increasing if:
an ≤ an+1, ∀n ∈ IN (and strictly increasing if an < an+1, ∀n ∈ IN).
Changing ” ≤ ” into ” ≥ ” one obtain decreasing (strictly de-
creasing) sequences. A sequence is said to be monotone (strictly
monotone) if it is either increasing or decreasing (strictly, etc).

Theorem
Every monotone, bounded sequence is convergent.
Proof Remember that a sequence of real numbers (an)n is bounded
if there are a, b ∈ IR s.t. a ≤ an ≤ b, ∀n ∈ IN (or, equivalently:
∃M > 0 s.t. |an| ≤ M,∀n ∈ IN.) Now suppose that (an)n is an in-
creasing bounded sequence. We write a = supn an for a = supA,
where A = {a0, a1, ...}. Let ε > 0 be fixed; then there is Nε ∈ IN s.t.
a− ε < aNε ≤ a (see proposition pg. 5). The sequence being increasing
we get a− ε < an ≤ a, ∀n ≥ Nε and so |an − a| < ε, ∀n ≥ Nε.

Example
It is useful to remember that the sequence an = (1 + 1

n
)n, n ≥ 1 is

increasing and bounded. Its limit is Euler’s famous number e.

Definition
Let X be a non empty set and let (xn)n∈IN be a sequence in X. If
n0 < n1 < ... < nk < ... is a strictly increasing sequence of natural
numbers, then the sequence (xnk)k is called a subsequence of the se-
quence (xn)n.
For example, if nk = 2k, one obtains the subsequence of ”even terms”
of (xn)n, usually denoted by (x2n)n; analogously (x2n+1)n is the subse-
quence of ”odd terms”.

Theorem (Cesaro)
Let (an)n be a bounded sequence in IR. Then there exists at least one
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convergent subsequence of (an)n.
Proof Let a, b ∈ IR be such that a ≤ an ≤ b,∀n ∈ IN. Let us denote
[a, b] = [a0, b0] and take an0 ∈ [a0, b0]. Divide the interval [a0, b0] into
two subintervals of equal length. At least one of these two subintervals
contains infinitely many terms of the sequence (an)n; denote by [a1, b1]
such an interval (if both subintervals do, then choose, for instance the
left one). Now pick n1 ∈ IN, n1 > n0 s.t. an1 ∈ [a1, b1]. In this way, we
can construct, by induction a sequence of nested intervals:

[a0, b0] ⊃ [a1, b1] ⊃ ... ⊃ [ak, bk] ⊃ ...

s.t. bk − ak = b−a
2k

and a subsequence of (an)n , denoted (ank)k s.t.
ank ∈ [ak, bk],∀k ∈ IN. Using the nested intervals theorem we have⋂
k∈IN

[ak, bk] = {c}. It is easy to check that ank −→ c, simply because

|ank − c| ≤ b−a
2k
.

In the definition of a convergent sequence the limit of a sequence
plays a central role. But if one would need to use this definition for
checking the convergence of a (given) sequence it would be necessary
first to ”guess” the limit and then check the condition (?). It would
be very useful to have a test for convergence involving only the given
sequence.

Definition
A sequence (an)n is said to be a Cauchy sequence if:

(? ? ?) ∀ε > 0, ∃Nε ∈ IN s.t. ∀n,m ≥ Nε |an − am| < ε.

Exercise
(i) The sequence (an)n is a Cauchy sequence iff:

∀ε > 0,∃Nε ∈ IN s.t. ∀n ≥ Nε,∀k ∈ IN |an+k − an| < ε.

(ii) Prove that Cauchy sequences are bounded (remember that conver-
gent sequences are bounded too).

Proposition
Convergent sequences are Cauchy sequences.
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Proof Let (an)n be a convergent sequence, say an −→ a. Let ε > 0
be given; then ∃Nε ∈ IN s.t. ∀n ≥ Nε |an − a| < ε

2
. Then for every

n,m ≥ Nε:

|an − am| = |an − a+ a− am| ≤ |an − a|+ |a− am| < ε.

Theorem (Cauchy criterion)
Let (an)n be a Cauchy sequence in IR. Then (an)n is a convergent
sequence.
Proof By using the second exercise above one obtains that (an)n is
bounded. Now by Cesaro’s theorem let ank −→ a be a convergent
subsequence of (an)n. Let ε > 0; then we can find N ′ε ∈ IN s.t. ∀n,m ≥
N ′ε |an − am| < ε

2
and N ′′ε s.t. ∀nk ≥ N ′′ε |ank − a| < ε

2
. Now take

Nε = max{N ′ε, N ′′ε }; for every n ≥ Nε and nk ≥ Nε we get:

|an − a| ≤ |an − ank |+ |ank − a| <
ε

2
+
ε

2
= ε.

We say that IR is a complete metric space (the meaning being ex-
actly the theorem above).

Exercises

1. Consider the sequence of intervals

(0, 1] ⊃
(

0,
1

2

]
⊃ ... ⊃

(
0,

1

n

]
⊃ ...

Compute
⋂
n

(
0,

1

n

]
. Does this contradict the nested intervals theorem?

Hint The intersection is the empty set; the intervals are not closed.

2. Let (xn)n be a sequence of real numbers s.t. the subsequences
(x2k)k, (x2k+1)k, (x3k)k are convergent. Prove that (xn)n is convergent.
Hint Let x2k −→ a, x2k+1 −→ b, x3k −→ c. Consider the subsequence
(x6k)k ; it is a subsequence of both sequences (x2k)k and (x3k)k, hence
x6k −→ a and x6k −→ c. It results that a = c (the limit is unique !);
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analogously, by using the subsequence (x6k+3)k, we get b = c, so a = b.

3. Compute supxn, inf xn for the sequence xn = n(−1)n .
Hint x2k = 2k and x2k+1 = 1

2k+1
; if A = {xn ; n ∈ IN}, it follows that

inf A = 0 and A is not bounded from above.

4. Every real number a is the limit of a sequence of rationals strictly
less than a and of a sequence of rationals strictly greater than a.
Hint Let a ∈ IR ; for every natural number n, there exists a rational
xn ∈ (a− 1

n
, a). Obviously xn < a ∀n ∈ IN and |xn − a| < 1

n
.

5. Let a, b, c distinct real numbers; find a sequence s.t. it contains
convergent subsequences to a, b and c.
Hint For example a, b, c, a, b, c, a....

6. Find a sequence s.t. for every natural number n there is a sub-
sequence convergent to n.

7. Let A 6= ∅ be bounded from above (bellow) set of real numbers.
Prove that there exists a sequence in A convergent to supA (inf A).
Hint Suppose A is bounded from above and let s = supA.
Then ∀n ∈ IN, ∃xn ∈ A s.t. s− 1

n
< xn ≤ s.

8. Let x > 0 and let an = 1
n

[nx], n ≥ 1. Is the sequence (an)n
bounded ?
Hint By the definition of the integer part, we have:

1

n
(nx− 1) <

1

n
[nx] ≤ 1

n
nx.

9. Let a and x0 be two strictly positive real numbers. Let xn be
the sequence defined by:

xn =
1

2

(
xn−1 +

a

xn−1

)
, n ≥ 1

Prove that xn is convergent and compute its limit.
Hint We shall prove that (xn)n is a bounded (from bellow) decreasing
sequence; first, obviously xn > 0,∀n ∈ IN. The definition of xn can



14 CHAPTER 1. SEQUENCES AND SERIES OF NUMBERS

be written as: x2
n−1 − 2xnxn−1 + a = 0. The equation must have real

solutions, hence : x2
n − a ≥ 0. Now we test the monotony:

xn − xn−1 =
1

2

(
xn−1 +

a

xn−1

)
− xn−1 =

1

2xn−1

(
a− x2

n−1

)
≥ 0,∀n ≥ 1

It results that (xn)n is decreasing and xn ≥
√
a, so it is convergent, etc.

1.3 Complex numbers

Definition and Notations
We shall denote the set of complex numbers by C. A typical element
of C is written as z = x + iy, x, y ∈ IR; x is the real part of z (de-
noted by <z) and y is the imaginary part of z (denoted by =z). So
z = <z+i=z. Two complex numbers z1 and z2 are equal iff <z1 = <z2

and =z1 = =z2. We suppose the algebraic operations (and their proper-
ties, i2 = −1) with complex numbers well known. We consider IR ⊂ C
by identifying the real number x with the complex number x+ i0. The
algebraic properties of C are synthetically expressed by saying that C is
a (commutative) field containing IR as a subfield. We do not consider
any order relation on C.

The complex numbers are represented as points in the (cartesian)
plane by associating the number z = x+ iy to the point of coordinates
(x, y).
Remember that the modulus of z = x + iy is |z| =

√
x2 + y2. The

geometric interpretation of |z| is the (euclidean) distance from z to the
origin. We define the distance between two complex numbers z1 and
z2 to be d(z1, z2) = |z1 − z2|. In other words d(z1, z2) is the length of
the line segment joining (the points) z1, z2 (direct computation). This
length is the same as in elementary analytic geometry.

The basic properties of the modulus are (∀z, z1, z2 ∈ C):
(i) |z| ≥ 0 , |z| = 0⇐⇒ z = 0.
(ii) |z1 z2| = |z1| |z2|.
(iii) |z1 + z2| ≤ |z1|+ |z2|.
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The properties of the distance are consequences of the properties of
the modulus ( ∀z1, z2, z3 ∈ C):
(i) d(z1, z2) ≥ 0, d(z1, z2) = 0⇐⇒ z1 = z2.
(ii) d(z1, z2) = d(z2, z1)
(iii) d(z1, z3) ≤ d(z1, z2) + d(z2, z3).
The property (iii) is called ”triangle inequality” for obvious reasons.

By using the distance (modulus) we can elegantly describe the fol-
lowing sets:
the open disk centered at z0 ∈ C and of radius r > 0:
D(z0, r) = {z ∈ C ; |z − z0| < r};
the closed disk centered at z0 ∈ C and of radius r > 0:
D′(z0, r) = {z ∈ C ; |z − z0| ≤ r};
the circle centered at z0 ∈ C and of radius r > 0:
C(z0, r) = {z ∈ C ; |z − z0| = r}.
Obviously, D′(z0, r) = D(z0, r)

⋃ C(z0, r). We shall term unit disk
(circle) the case z0 = 0 and r = 1.

Exercise
Prove that if z1, z2 ∈ C, z1 6= z2 then there are r1 > 0, r2 > 0 s.t.
D(z1, r1)

⋂
D(z2, r2) = ∅.

Remark
It would be useful to keep in mind that by ”proof” we mean to use the
definitions and properties of complex numbers, not ”geometrical intu-
itions” (which make the previous exercise more or less trivial). Gener-
ally speaking, geometric intuition (or the use of a picture) is useful as
a starting point but it will be never considered as a proof.

Definition
(i) A subset A ⊆ C is called bounded if either A = ∅ or :
∃M > 0 s.t. |z| ≤M, ∀z ∈ A.
(ii) A sequence (zn)n in C is called bounded if:
∃M > 0 s.t. |zn| ≤M, ∀n ∈ IN.

Exercise
What is the geometric interpretation of boundness? (in terms of disks).
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Definition
The sequence (zn)n in C has the limit z ∈ C if:

∀ε ∃Nε ∈ IN s.t. ∀n ≥ Nε |zn − z| < ε.

We write lim
n→∞

zn = z, or zn −→ z.

The sequences having limit are called convergent.
The geometric interpretation of the previous definition is: zn −→ z iff
for every open disk D(z, ε), the terms zn with n ≥ Nε belong to the
disk (zn ∈ D(z, ε), ∀n ≥ Nε).

Remark
It is useful to keep in mind that zn −→ z in C iff |zn − z| −→ 0 in IR.

Exercise (the uniqueness of the limit)
Prove that if zn −→ z and zn −→ w, then z = w. For the proof one
can use the exercise after the definition of disks (pg. 16).

Exercise
Prove that convergent sequences in C are bounded.

Exercise
If xn −→ x in IR, then xn −→ x in C.

Example
Let z ∈ C and consider the sequence of the powers of z: (zn)n. We want
to find the complex numbers z for which (zn)n is convergent. Consider
the following cases:
(i) |z| < 1; in this case it is obvious that zn −→ 0, because:
|zn| = |z|n −→ 0 (in IR).
(ii) |z| > 1; in this case (zn)n is not bounded (again one can reduce the
problem to the real case), so not convergent.
(iii) |z| = 1 (z is on the unit circle); we shall use that zn+1 = znz (this
relation could be an inductive definition of powers of z). Let us suppose
that zn −→ `; it is clear that zn+1 −→ ` and znz −→ `z. So we obtain
` = `z. Consequently, we get ` = 0 or z = 1. Finally we obtain only
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that z = 1, simply because ` cannot be 0. After all, the only complex
number on the unit circle having a convergent sequence of powers is
z = 1.

We shall need the following inequalities (the proof is trivial and will
be left to the reader):

(?) max{ | <z | , | =z | } ≤ |z| ≤ | <z |+ | =z |, ∀z ∈ C.

Let now (zn)n be a sequence in C; there are two sequences (xn)n and
(yn)n of real numbers such that zn = xn+iyn. Viceversa, two sequences
of real numbers define a sequence of complex numbers (more precisely
the first sequence will be the sequence of the real parts and the second
the imaginary parts). We want to investigate the connections between
the nature (convergence or not) of these sequences.

Proposition
Let (zn)n be a sequence in C, zn = xn + iyn and let z = x + iy ∈ C;
then:

zn −→ z (in C) iff xn −→ x and yn −→ y (in IR).

Proof Use (?) to obtain:

max{ |xn − x | , |yn − y| } ≤ |zn − z| ≤ |xn − x|+ |yn − y|, ∀n ∈ IN

and then apply the definition of convergence.

Remark
In conclusion the convergence of a sequence in C can be reduced to the
convergence of two sequences in IR. One can use this to compute limits
of convergent sequences in C.

Example

Test the convergence of zn =
1

n+ i
and compute the limit (if any).

Solution zn =
n

n2 + 1
− i 1

n2 + 1
, so <zn =

n

n2 + 1
→ 0 and
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=zn = − 1

n2 + 1
→ 0. Another method: |zn| =

1√
n2 + 1

−→ 0.

Definition
A sequence (zn)n in C is called a Cauchy sequence if:

∀ε > 0,∃Nε ∈ IN s.t. ∀n,m ≥ Nε |zn − zm| < ε.

Proposition
Let (zn)n be a sequence in C, zn = xn + iyn. Then (zn)n is a Cauchy
sequence in C iff (xn)n and (yn)n are Cauchy sequences in IR.
The proof is similar to the proof of the previous proposition and will
be left to the reader.

Theorem
Let (zn)n be a sequence in C; then:

(zn)n is convergent iff (zn)n is a Cauchy sequence.

Proof It obviously follows from the corresponding result in IR and the
above two propositions.
So we can conclude (as we did for IR) that C is a complete metric
space.

The following proposition is easy.

Proposition
(i) If zn −→ z and wn −→ w then zn + wn −→ z + w.
(ii) If zn −→ z and wn −→ w then znwn −→ zw.
(iii) If zn −→ z and wn −→ w,w 6= 0 then zn

wn
−→ z

w
. (the sequence zn

wn
is defined from a rank N s.t. wn 6= 0,∀n ≥ N).

Exercises

1. Prove the last proposition.

2. Draw graphic representations for the following sets of complex
numbers:
(i) {z ∈ C ; |z − i| ≤ 1}.
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(ii) {z ∈ C ; 1 ≤ |z| < 2}.
(iii) {z ∈ C ; 1 ≤ <z ≤ 2}
(iv) {z ∈ C ; |z| < 1 and |=z| < 1

2
}.

(v) {z ∈ C ; |z − z1| = |z − z2|}, z1, z2 are fixed complex numbers.

3. If (xn)n is a sequence in IR and xn −→ z in C then z ∈ IR.

4. If zn −→ z then |zn| −→ |z|.
Hint It can be proved directly or by using the inequality (prove it):

| |z| − |w| | ≤ |z − w|, ∀z, w ∈ C

5. Is the converse of the previous exercise true? What if z = 0 ?
Hint Obviously, it is false. However, the assertion:
|zn| −→ 0 =⇒ zn −→ 0 is true.

6. Is Cesaro’s theorem true in C ? (remember that Cesaro’s theo-
rem in IR is about convergent subsequences of bounded sequences).
Hint The answer is yes: if zn is a bounded sequence in C, then <zn
and =zn are bounded sequences in IR; apply now Cesaro’s theorem (in
IR) for them. Be careful in choosing the common indices of the subse-
quences!

7. If z = x + iy then, by definition, its conjugate is z = x − iy.
Prove that zn −→ z iff zn −→ z.

8. Suppose that zn −→ z; let w ∈ C and r > 0.
(i) Prove that if zn ∈ D′(w, r), ∀n ∈ IN then z ∈ D′(w, r).
(ii) What if zn ∈ D(w, r), ∀n ∈ IN ? Is it true that z ∈ D(w, r) ?
(iii) Prove that if zn ∈ C(w, r),∀n ∈ IN then z ∈ C(w, r).
Hint (i) We can suppose w = 0. If |zn| ≤ r and zn −→ z, then:

|z| = lim
n
|zn| ≤ r.

(ii) The answer is no, in general; take for example zn = 1 − 1
n
. Then

zn ∈ D(0, 1),∀n ∈ IN, zn −→ 1, but 1 6∈ D(0, 1).
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9. Study the convergence of the sequences:

(i) zn =
2n

n!
+ i

n2

2n
(ii) wn = n−1 + in

(iii) un =
1 + in

1− in
(iv) vn = 1 + i+ i2 + ...+ in

Hint zn −→ 0 and un −→ −1; wn and vn are not convergent.

10. If zn −→ z then 1
n
(z1 + z2 + ...+ zn) −→ z.

Hint Use the corresponding property for real sequences.

11. By using the sequence (zn)n, study if the sequences (sinn)n
and (cosn)n can be both convergent. But at least one of them?
Hint Let z = cos 1 + sin 1; then zn = cosn+ i sinn, and zn is divergent
(because |z| = 1 and z 6= 1).
Now the second part. Suppose that sinn −→ `; then cos2 n −→ 1− `2,
so cos 2n −→ 1− 2`2. It results that z2n −→ (1− 2`2) + i`2, contradic-
tion because the sequence z2n = (z2)n is not convergent.

1.4 Series of numbers

Definition
Let un be a sequence in C; form a new sequence (Sn)n defined by:

Sn = u0 + u1 + ...+ un.

The pair of sequences ((un)n, (Sn)n) is called a series and is de-
noted

∑
n

un. The terms of the sequence (un)n are the terms of the

series and the terms of the sequence (Sn)n the partial sums of the
series.
Convergence The series

∑
n

un is said to be convergent if the se-

quence of partial sums converges. In this case, say, Sn −→ S, then (the
complex number) S is called the sum of the (convergent) series and
we write

∑
n

un = S. The notation
∑
n

un is used for both the series and
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for its sum (if convergent); it will be clear from the context what is the
case.
Not convergent series are called divergent. By the nature of a series
we mean convergence (or divergence).

Remark
(i) It is sometimes useful to consider

∑
n≥1

un with corresponding partial

sums Sn = u1 +u2 + ...un; the results can be easily adapted to this case.
(ii) If (un)n is a sequence in IR then (Sn)n is a sequence of real num-
bers and if

∑
n
un converges then the sum S is a real number.

(iii) We shall use also the notation u0 + u1 + ...+ un + ... for
∑
n
un.

Theorem
Let

∑
n
un be a convergent series; then limn un = 0.

Proof Obviously un = Sn − Sn−1, ∀n ≥ 1, etc.

Remark It is important to notice that the condition un −→ 0 is
a necessary condition for convergence; it is not sufficient for the
convergence, as the following example shows.

Example
Let un =

√
n+ 1−

√
n; obviously un = 1√

n+1+
√
n
−→ 0 but sn =

√
n+ 1

is not convergent.

An important series is given by:
Example (the geometric series)

Let z ∈ C and consider the series

1 + z + z2 + ... =
∑
n≥0

zn

If z = 1, then sn = n+ 1, hence the series is divergent.

If z 6= 1, then sn =
1− zn+1

1− z
and by using the result about the conver-

gence of the sequence (zn)n (see the previous section) we get that the

geometric series converges iff |z| < 1; in this case
∑
n≥0

zn =
1

1− z
.
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Proposition
(i) If

∑
n

un,
∑
n

vn are two series s.t. ∃n0 ∈ IN s.t. un = vn, ∀n ≥ n0,

then they have the same nature (both convergent or both divergent).
(ii) Suppose

∑
n

un = S,
∑
n

vn = T ; then
∑
n

(un + vn) = S + T .

(iii) Suppose
∑
n

un = S and let α ∈ C; then
∑
n

αun = αS.

Proof Easy.

Remark
Assertion (i) of the above proposition may be used if a condition about
a series holds from an index on, more precisely, if we are interested
(only) about its nature, then we can suppose that the condition holds
for all the terms.

Theorem (Cauchy criterion)
The series

∑
n

un converges iff:

∀ε > 0,∃Nε,∀n ≥ Nε,∀p ∈ IN? |un+1 + un+2 + ...+ un+p| < ε.

Proof trivial application of the Cauchy criterion for sequences to (Sn)n.

Example

Let consider the harmonic series : 1 +
1

2
+

1

3
+ ... =

∑
n≥1

1

n
.

Direct computation gives:

S2n − Sn =
1

n+ 1
+

1

n+ 2
+ ...+

1

2n
≥ 1

2
.

The harmonic series is divergent because (Sn)n is not a Cauchy se-
quence. We remark that the sequence of partial sums is (in this case)
strictly increasing so the divergence of the harmonic series is equivalent
to the fact that (Sn)n is not bounded (from above).

Definition
A series

∑
n

un is said to be a series with positive terms (s.p.t.) if

un ≥ 0, ∀n ∈ IN. When needed, we shall suppose that un > 0 (for
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example, when considering un+1

un
, etc). The series with positive terms

are easier to handle because of the following:

Proposition
If
∑
n

un is a s.p.t. then its convergence is equivalent to the boundness

(from above) of the sequence (Sn)n.
Proof The sequence (Sn)n is increasing, etc.

The nature of series is decided by using tests of convergence. In
the next we give some usual tests.

The Comparison Test
Let

∑
n

un,
∑
n

vn be two s.p.t. Suppose that un ≤ vn,∀n ≥ n0. Then:

(i) If
∑
n

vn converges so does
∑
n

un.

(ii) If
∑
n

un diverges so does
∑
n

vn.

Proof Let (Sn)n and (Tn)n be the sequences of partial sums of the
series

∑
n

un,
∑
n

vn. We can suppose un ≤ vn, ∀n ∈ IN. (why ?). Then

Sn ≤ Tn, ∀n ∈ IN and the result follows by using the previous proposi-
tion.

Example

The series
∑
n≥2

1

2n lnn
is convergent because

1

2n lnn
≤ 1

2n
, n ≥ 3.

The Limit Comparison Test

Let
∑
n

un,
∑
n

vn be two s.p.t. Suppose that lim
n→∞

un
vn

= k ∈ IR. Then:

(i) If
∑
n

vn converges so does
∑
n

un.

(ii) If k 6= 0 and
∑
n

un converges so does
∑
n

vn; (for k 6= 0 the series

have the same nature).

Proof (i) One obtains
un
vn
≤ k + 1,∀n ≥ n0 and so un ≤ (k + 1)vn,

∀n ≥ n0. Now apply the (previous) comparison test.

(ii) We get that lim
n→∞

un
vn

=
1

k
; now reason like in (i).
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Example

Consider the series
∑
n≥1

1

n2
and

∑
n≥1

1

n(n+ 1)
; as lim

n→∞

n(n+ 1)

n2
= 1, the

series have the same nature. But the second series is convergent be-

cause:
1

k(k + 1)
=

1

k
− 1

k + 1
, etc. So the first series is convergent too.

The Root Test
Let

∑
n

un be a s.p.t.

(i) If ∃k ∈ (0, 1) s.t. n
√
un ≤ k, ∀n ≥ n0, then

∑
n

un is convergent.

(ii) If n
√
un ≥ 1 for an infinity of indices, then

∑
n

un is divergent.

Proof (i) If n
√
un ≤ k then un ≤ kn; now compare with the geometric

series of ratio k.
(ii) Obviously un 6→ 0.

The Root Test (Limit form)
Let

∑
n

un be a s.p.t. and suppose that lim
n→∞

n
√
un = `.

(i) If ` < 1 the series
∑
n

un converges.

(ii) If ` > 1 then
∑
n

un diverges.

(iii) If ` = 1 then no conclusion can be drawn.
Proof (i) (sketch) Take ` < k < 1 and remark that n

√
un ≤ k, ∀n ≥ n0.

(ii) We leave it as an exercise; (iii) the meaning of ”no conclusion” is
that there are examples of convergent series and of divergent series sat-
isfying (iii); take for example un = 1

n
and vn = 1

n2 .

The Ratio Test (Limit form)

Let
∑
n

un be a s.p.t. and suppose that lim
n

un+1

un
= `; then:

(i) if ` < 1 the series
∑
n

un converges;

(ii) if ` > 1 the series
∑
n

un diverges;

(iii) if ` = 1 no conclusion can be drawn. We omit the proof (see [4], [8]).
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Exercise

(i) Prove that the series
∑
n≥0

1

n!
is convergent.

(ii) Prove that
∑
n≥0

1

n!
= lim

n

(
1 +

1

n

)n
= e.

Proof (i) We have that lim
n→∞

un+1

un
= 0, so the series is convergent.

(ii) Let S be the sum of the series; we have:(
1 +

1

n

)n
=

n∑
k=0

n!

k!(n− k)!nk
=

n∑
k=0

1

k!

(
1− 1

n

)(
1− 2

n

)
...

(
1− k − 1

n

)
.

It results that
(

1 +
1

n

)n
<

n∑
k=0

1

k!
, hence S ≥ e. For the other inequal-

ity, let p ∈ IN, n ≥ p; then:(
1 +

1

n

)n
≥

p∑
k=0

1

k!

(
1− 1

n

)(
1− 2

n

)
...

(
1− k − 1

n

)
>

>
(

1− 1

n

)(
1− 2

n

)
...
(

1− p− 1

n

)( p∑
k=0

1

k!

)
.

It results that

e = lim
n→∞

(
1 +

1

n

)n
≥
( p∑
k=0

1

k!

)
,∀p ∈ IN, so S ≤ e.

The Integral Test
Suppose that f : [1,∞) 7→ IR is a decreasing and positive function.

Then the series
∑
n
f(n) is convergent iff the sequence

(∫ n

1
f(x)dx

)
n

is

convergent.
Proof The function f being decreasing it results that all (Riemann)

integrals
∫ n

1
f(x)dx exist. Moreover, the sequence

(∫ n

1
f(x)dx

)
n

is

positive and increasing. By integrating the inequalities:

f(k + 1) ≤ f(x) ≤ f(k), ∀x ∈ [k, k + 1],
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we get:

f(k + 1) ≤
∫ k+1

k
f(x)dx ≤ f(k), ∀k ∈ IN, k ≥ 1.

By summing all these from k = 1 to k = n, it results:

f(2) + f(3) + ...+ f(n+ 1) ≤
∫ n+1

1
f(x)dx ≤ f(1) + f(2) + ...+ f(n).

If (sn)n is the sequence of partial sums of the series
∑
n
f(n) one obtains:

sn+1 − f(1) ≤
∫ n+1

1
f(x)dx ≤ sn, ∀n ∈ IN, n ≥ 1.

Now
∑
n
f(n) being a s.p.t. and

(∫ n

1
f(x)dx

)
n

being increasing, one

easily obtains the result.

Example (The Riemann Series)

Let α ∈ IR; the real Riemann series
∑
n≥1

1

nα
converges iff α > 1.

Proof Obviously, if α ≤ 0 the series is divergent. For α > 0, apply the
integral test to the function f(x) = 1

xα
.

In exercises the reader will find other useful tests for the conver-
gence of s.p.t.

We come back to general series (not necessarily with positive terms).

Abel’s Theorem
Let

∑
n

αnun be a series of complex numbers s.t:

(i) αn ↘ 0 (the sequence (αn)n is a sequence of positive numbers de-
creasing to zero);
(ii) the sequence σn = u0 + u1 + ...+ un is bounded.
Then

∑
n

αnun is convergent.

For the proof, see [1], [4].
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Definition
A Leibniz series (alternating series) is a series of real numbers
of the form

α0 − α1 + α2 − α3 + ...+ (−1)nαn + ...,

where (αn)n is a sequence s.t. αn ↘ 0.

Theorem
Leibniz series are convergent.
Proof Apply Abel’s theorem by taking un = (−1)n.

Example

The alternating harmonic series
∑
n≥1

(−1)n+1

n
is convergent.

Definition
The series

∑
n

un is said to be absolutely convergent if the series∑
n

|un| is convergent.

Proposition
Absolutely convergent series are convergent.
Proof Apply Cauchy criterion (for series) and use the inequality:

|un+1 + un+2 + ...+ un+p| ≤ |un+1|+ |un+2|+ ...+ |un+p|

Remark
(i) Generally, convergent series are not absolutely convergent; an ex-
ample is the harmonic alternating series.
(ii) Absolutely convergent series are important because they are, in
some sense, commutatively convergent; more precisely:
if
∑
n

un is absolutely convergent with the sum S then for every bijec-

tive map τ : IN 7→ IN (permutation) the series
∑
n

uτ(n) is absolutely

convergent with sum S.
This no more true for convergent but non absolutely convergent se-

ries. Again, the alternating harmonic series
∑
n≥1

(−1)n+1

n
is an example.
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Indeed, let S > 0 (why ?) be the sum:

1− 1

2
+

1

3
− 1

4
+ ... = S

By multiplying the above equality by 1
2
, it results:

1

2
− 1

4
+

1

6
− 1

8
+ ... =

1

2
S

Now sum the above equalities and associate the terms as follows:

1 +
(
−1

2
+

1

2

)
+

1

3
+
(
−1

4
− 1

4

)
+

1

5
+
(
−1

6
+

1

6

)
+

1

7
+ ... =

3

2
S.

After computing the parentheses one gets:

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− ... =

3

2
S,

which is a permutation of the initial series.

Our final result of this section concerns the approximation of the
sum of a Leibniz series; the idea is to replace it with a partial sum and
compute the (absolute) error.

Proposition
Let

∑
n≥0

(−1)nαn be a Leibniz series and let S be its sum. Then

∣∣∣∣∣
n∑
k=0

(−1)kαk − S
∣∣∣∣∣ ≤ αn+1

Proof Remember that αn ↘ 0. Let:

S0 = α0, S2 = α0 − α1 + α2 = α0 − (α1 − α2) ≤ S0, etc

It is easy to observe that the subsequence S2k ↘ S; analogously,
S2k+ ↗ S. Consequently, one gets S2n+ ≤ S ≤ S2n, so:
0 ≤ S2n − S ≤ S2n − S2n+1 = α2n+1, etc.
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Exercises

1. Let
∑
n

un be a series in C and un = xn + iyn.

Prove that
∑
n

un converges iff
∑
n

xn and
∑
n

yn converge.

Is the series
∑
n

1

n+ i
convergent ?

Hint Apply the corresponding result for sequences to the partial sums.
1

n+ i
=

n

n2 + 1
− i 1

n2 + 1
; the series is divergent because the series of

the real parts is divergent.

2. Study the nature of the series:

∑
n

2
√
n4 + 1

n3 − 10n∑
n

√
n+ 1−

√
n√

n+ 2
,

∑
n

3
√
n+ 1− 3

√
n

np
, p ∈ IR

∑
n

1√
n

ln

(
1 +

1√
n3 + 1

)
∑
n

sin
n

n2 + 3∑
n

ln(n+ 2)√
n3 + 1

.

Hint We apply the limit comparison test.

lim
n
nα

2
√
n4 + 1

n3 − 10n
= 2 if α = 1, so the series has the same nature as the

Riemann series with α = 1 (divergent).

lim
n
nα
√
n+ 1−

√
n√

n+ 2
= 1 if α = 3

2
, so the series converges.

lim
n
nα

1√
n

ln

(
1 +

1√
n3 + 1

)
= 1 if α = 2, so the series converges.
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lim
n
nα

ln(n+ 2)√
n3 + 1

= 0, ∀α ∈
(
1, 3

2

)
, so the series converges.

3. Study the nature of the series:∑
n

n!

nn
,
∑
n

n

4n
,
∑
n

(
2n+ 1

3n+ 1

)n
,
∑
n

(n!)2

(2n)!
.

Hint Apply ratio test or root test:

lim
n

(n+ 1)!

(n+ 1)n+1

nn

n!
=
(

n

n+ 1

)n
=

1

e
,

so the series is convergent, etc.

4. Find an example of a series s.t. the ratio test (the limit form)
doesn’t decide but the root test (limit form) does.
Hint Consider the series defined by the sequence:

xn =

{
1
n
an if n is even
nan if n is odd

, a > 0

By applying the root test, one gets lim
n

n
√
xn = a, so if a < 1 the series

is convergent, if a > 1 the series is divergent; if a = 1 the series is
divergent (xn 6→ 0).

5. Study the nature of series defined by the sequences:

xn =
1 · 3 · 5 · ...(2n− 1)

2 · 4 · 6...2n
, yn =

1 · 3 · 5 · ...(2n− 1)

2 · 4 · 6...2n
1

2n+ 1
,

un = n!
(
a

n

)n
, a > 0, vn =

n!

(a+ 1)(a+ 2)...(a+ n+ 1)
, a > −1.

Hint We shall use Raabe test:

Let
∑
n

un be a s.p.t. and let ` = lim
n

n

(
un
un+1

− 1

)
.

(i) If ` > 1, the series is convergent.
(ii) If ` < 1, the series is divergent.
(iii) If ` = 1, no conclusion.
Apply Raabe test for xn, yn and vn.
For un, by applying ratio test one gets: if a < e the series is convergent
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and if a > e the series diverges. For a = e ratio test does’nt decide so
we apply Raabe test:

lim
n
n

(
xn
xn+1

− 1

)
= lim

n
n
((

n+ 1

n

)n 1

e
− 1

)
=

= n
((

1 +
1

n

)n 1

e
− 1

)
=

1

e
lim
n

(
1 + 1

n

)n
− e

1
n

.

For the last limit apply L’Hopital rule:

lim
x→0

(1 + x)
1
x − e

x
= lim

x→0

(1 + x)
1
x
−1[x− (1 + x) ln(1 + x)]

x2
= −e

2
,

so the series is divergent.

6. Study the nature of the series defined by the sequences:

xn =

(
1− 3 lnn

2n

)n
, yn =

lnn · ln(1 + 1
n
)

n
, zn = (lnn)− ln(lnn).

Hint We shall use the logarithmic test :

Let
∑
n
un be a s.p.t. and let ` = lim

n

− lnun
lnn

.

(i) If ` > 1, the series is convergent.
(ii) If ` < 1 the series is divergent.
(iii) If ` = 1, no conclusion.

7. If
∑
n

un is a convergent s.p.t then
∑
n

u2
n is convergent.

Hint un −→ 0 hence u2
n < un,∀n ≥ n0.

8. Study the nature of the series
∑
n≥1

sinnx

n
, x ∈ IR, x 6= 2kπ, k ∈ ZZ.

Hint Apply Abel test: αn = 1
n
↘ 0 and un = sinnx

n
; then prove that:

sinx+ sin 2x+ ...+ sinnx =
sin (n+1)x

2
sin nx

2

sin x
2

,∀n ∈ N?.
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The series is not absolutely convergent; if it would be, then the series∑
n

1− cos(2nx)

2n
should be convergent (comparison test).

9. Study the convergence and the absolute convergence of the series
defined by the sequences:

un =
(−1)nn+ 2

n2
, vn = sin

(
n2 + n+ 1

n+ 1
π

)
.

Hint The first is convergent (sum of two convergent series) but not
absolutely convergent. For the second:

vn = sin

(
n2 + n+ 1

n+ 1
π

)
= (−1)n sin

π

n+ 1
.

It results that the series is convergent, but it is not absolutely conver-
gent (comparison limit test).

10. Study the nature of series defined by the sequences:

xn =
(n!)2

(2n)!

xn = (2n+ 1)

(
a(a− 1)...(a− n+ 1)

(a+ 1)(a+ 2)...(a+ n+ 1)

)2

, a 6∈ ZZ

xn =
3
√
n+ 1− 3

√
n

na
, a ∈ IR

xn =
1

n ln2 n

xn =
zn

n
, z ∈ C

xn =
a+ (−1)n

√
n

n
, a ∈ IR.



Chapter 2

Sequences and Series of
functions, Elementary
functions

2.1 Sequences of functions

For the definitions we shall consider real-valued functions defined on a
(nonempty) set X. Most results have obvious extensions to complex-
valued functions; this fact will be just mentioned, without any details.
For the applications, the basic case considers X an interval of real
numbers.

Let (fn)n be a sequence of functions fn : X 7→ IR,∀n ∈ IN.
For every fixed x ∈ X we get a sequence (fn(x))n in IR (by evaluating
the the functions of the sequence at x).

Definition (pointwise convergence)
The sequence (fn)n converges pointwise (or it is pointwise con-
vergent) f : X 7→ IR if:

∀x ∈ X lim
n→∞

fn(x) = f(x).

If this is true, then the function f is said to be the pointwise limit
of the sequence (fn)n. We shall use the notation fn

p−→ f .

33
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Remark
(i) The same definition works for complex-valued functions.
(ii) Loosely speaking, checking the pointwise convergence of a sequence
(fn)n means to fix x ∈ X and to compute the limit (if any) lim

n→∞
fn(x);

if the limits exist for every x ∈ X then one defines the (pointwise limit)
function f : X 7→ IR as f(x) = lim

n→∞
f(x).

(iii) The pointwise limit of a sequence (if any) is unique.

Example
Let X = [0, 1] and fn(x) = xn; by applying the above ”algorithm” one

obtains that fn
p−→ f with f(x) =

{
0 if 0 ≤ x < 1
1 if x = 1

The following proposition is obvious (a restatement of the defini-
tion).

Proposition
The following assertions are equivalent:
(i) fn

p−→ f
(ii) ∀x ∈ X, ∀ε > 0, ∃Nε,x ∈ IN s.t. ∀n ≥ Nε,x |fn(x)− f(x)| ≤ ε.

Remark
It is crucial to understand that Nε,x depends both on x and on ε; in
other terms, for a given ε > 0 it will be, generally, not possible to find
a Nε ”good” for all x ∈ X.

Let us now give the definition of uniform convergence.

Definition (uniform convergence)
The sequence of functions (fn)n is said to converge uniformly to
the function f if:

(?) ∀ε > 0, ∃Nε ∈ IN s.t. ∀n ≥ Nε |fn(x)− f(x)| ≤ ε, ∀x ∈ X.

We shall denote this by fn
u−→ f .

Remark
(i) The new fact is that Nε depends only on ε (it is the same for all
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x ∈ X). So the condition for uniform convergence is stronger than

that of pointwise convergence: if fn
u−→ f then fn

p−→ f .
(ii) Same definition for complex-valued functions.
(iii) The uniform limit of a sequence is unique.

Example
Consider X = [0, 1), fn(x) = xn. It is clear that fn

p−→ 0 (the constant
function 0). Let us show that fn 6

u→ 0 (the sequence is not uniformly
convergent). Let us suppose, by contradiction, that fn

u−→ 0. Then
taking ε = 1

2
we could find N ∈ IN s.t. ∀n ≥ N xn ≤ 1

2
, ∀x ∈ [0, 1), so

in particular xN ≤ 1
2
, ∀x ∈ [0, 1). But lim

x→1
xN = 1, contradiction.

Exercise
Prove that fn

p−→ 0 ⇐⇒ fn − f
u−→ 0; remember that for two func-

tions f, g : X 7→ IR, then f − g : X 7→ IR is the function defined by
(f − g)(x) = f(x)− g(x), ∀x ∈ X.

Theorem (Cauchy criterion for uniform convergence)
A sequence of functions (fn)n is uniformly convergent iff

∀ε > 0, ∃Nε ∈ IN s.t. ∀n,m ≥ Nε |fn(x)− fm(x)| ≤ ε, ∀x ∈ X.

Proof It will be left as an exercise (not completely trivial).

In order to obtain some useful tests for uniform convergence let
us remind that IR = IR

⋃{−∞,+∞} (the extended real line), where
−∞,+∞ are not real numbers; the order in IR is extended to IR by
defining −∞ < x < +∞, ∀x ∈ IR, −∞ < ∞. We suppose that the
reader is familiar with sequences having limit −∞ (or +∞). We
keep the notion ”convergent” for sequences (in IR) with real limit. In
IR every non empty set has l.u.b. (g.l.b.); for example if A ⊆ IR is not
bounded from above then supA = +∞, etc. As usual, we shall also
write ”∞” instead of ”+∞”.

Now let us go back to a sequence of functions (fn)n and f : X 7→ IR.
Put mn = sup{|fn(x) − f(x)| ; x ∈ X} ∈ IR (so mn always exists,
possibly ∞).
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Proposition
fn

u−→ f ⇐⇒ lim
n
mn = 0.

Proof It is enough to see thatmn ≤ ε ⇐⇒ |fn(x)−f(x)| ≤ ε, ∀x ∈ X
and apply the definitions.

The above result is useful in applications if (of course) one manages
to compute mn.

Example
Check if fn : [0, 1] 7→ IR, fn(x) = xn − xn+1 is a uniform convergent
sequence.
The first step Let us check the pointwise convergence of the sequence.
It is easy to observe that fn

p−→ 0.
The second step We have the alternative: fn

u−→ 0 or (fn)n is not
uniformly convergent (why ?). We shall compute mn; the functions fn
are all continuous on the closed and bounded interval [0, 1], so (by the
Weierstrass theorem - known from the college) they all have a maximum
value which is mn. As fn(0) = fn(1) = 0, the maximum value is taken
somewhere in the open interval (0, 1).
The derivative f ′n(x) = nxn−1 − (n + 1)xn is zero for xn = n

n+1
. It

follows that mn = fn(xn) (Fermat’s theorem). But:

lim
n
mn = lim

n

(
n

n+ 1

)n (
1− n

n+ 1

)
= 0.

Consequently, fn
u−→ 0.

Proposition
If there exists a sequence (xn)n ∈ X s.t. fn(xn) 6→ 0 then fn 6

u→ 0.
Proof Obviously, mn ≥ |fn(xn)| 6→ 0, so mn 6→ 0.

Example
Let us prove that the sequence fn(x) = 2nx

1+n2x2 , x ∈ (0, 1] does not
converge uniformly.
First, fn

p→ 0. If xn = 1
n
∈ (0, 1], then fn(xn) = 1,∀n ∈ IN, so

fn(xn) 6→ 0 and we can apply the previous proposition.

We now recall the notion of a continuous function.
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Definition
Let I ⊆ IR be a non empty interval, f : I 7→ IR be a function and a ∈ I;
we say that f is continuous at a if:

∀ε > 0,∃δε > 0 s.t. if x ∈ I, |x− a| < δε then |f(x)− f(a)| < ε.

If f is continuous at every point of I then f is said to be continuous
on I.

Remark
An equivalent condition of continuity at a ∈ I is:

for every sequence (xn)n in I, s.t. xn −→ a one has f(xn) −→ f(a).

As the first example of this section shows, the pointwise limit of
a sequence of continuous function is not necessarily continuous. The
notion of uniform convergence is proved to be useful in ”preserving con-
tinuity”:

Theorem (transfer of continuity)
Let (fn)n be a sequence of functions fn : I 7→ IR s.t.:
(i) fn

u−→ f .
(ii) the functions fn are continuous at a ∈ I.
Then f is continuous at a.
Proof Let ε > 0 be given. Then:

fn
u−→ f ⇒ ∃Nε s.t. if n ≥ Nε |fn(x)− f(x)| ≤ ε

3
, ∀ ∈ I.

fNε is continuous at a, hence :

∃δε > 0 s.t. if x ∈ I, |x− a| < δε then |fNε(x)− fNε(a)| < ε

3
.

Now if |x− a| < δε:

|f(x)−f(a)| ≤ |f(x)−fNε(x)|+ |fNε(x)−fNε(a)|+ |fNε(a)−f(a)| < ε.
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Remark
(i) If fn

u−→ f and all the functions fn are continuous on I then f is
continuous on I.
(ii) The uniform convergence is not a necessary condition for the con-
tinuity of the (pointwise) limit; take fn(x) = xn, x ∈ [0, 1).

Definition
If (fn)n is a sequence of functions fn : [a, b] 7→ IR such that fn has
the limit f (pointwise or uniform) then we say that it can be term by

term integrated if

b∫
a

fn −→
b∫
a

f .

If the functions f, fn are differentiable then we say that the sequence
(fn)n can be term by term differentiated if f ′n −→ f ′.

Theorem (term by term integration )
Let (fn)n be a sequence of continuous functions fn : [a, b] 7→ IR s.t.

fn
u−→ f . Then

∫ b

a
fn −→

∫ b

a
f.

Proof By using the previous theorem, f is continuous and so inte-
grable; moreover:∣∣∣∣∣

∫ b

a
fn −

∫ b

a
f

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a
(fn − f)

∣∣∣∣∣ ≤
∫ b

a
|fn − f |.

Let ε > 0; the uniform convergence gives Nε ∈ IN s.t.
∀n ≥ Nε |fn(x)− f(x)| ≤ ε

b−a , ∀x ∈ [a, b]. Then:∣∣∣∣∣
∫ b

a
fn −

∫ b

a
f

∣∣∣∣∣ ≤ ε

b− a
(b− a) = ε, ∀n ≥ Nε.

Remark
(i) Generally, the pointwise convergence is not sufficient for the inte-
gration term by term. An example is the sequence of piecewise linear

functions: fn(x) =


n2x if 0 ≤ x ≤ 1

n

n2
(

2
n
− x

)
if 1

n
≤ x ≤ 2

n

0 if 2
n
≤ x ≤ 1

The sequence is pointwise convergent to 0, but lim
n

∫ 1

0
fn = 1.
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(ii) The uniform convergence is not a necessary condition for the inte-
gration term by term; take fn(x) = xn, x ∈ [0, 1].

Then fn
p−→ f, f(x) =

{
0 if 0 ≤ x < 1
1 if x = 1

, fn 6
u→ f and

lim
n

∫ 1

0
fn = lim

n

1
n+1

= 0 =
∫ 1

0
f.

Theorem (term by term differentiation )
Let (fn)n be a sequence of functions fn : I 7→ IR s.t:

(i) fn
p−→ f

(ii) f ′n
u−→ g.

Then f is differentiable and f ′ = g.

Proof Take a ∈ I; it is enough to prove that lim
x→a

f(x)− f(a)

x− a
= g(a).

Let us define

ϕn(x) =

{
fn(x)−fn(a)

x−a if x 6= a

f ′n(a) if x = a
and ϕ(x) =

{
f(x)−f(a)

x−a if x 6= a

g(a) if x = a

It is clear that ϕn
p−→ ϕ and that the functions ϕn are continuous. It

is enough to prove that ϕn
u−→ ϕ. Let ε > 0; then, by the Cauchy

criterion applied to f ′n, we have:

∃Nε ∈ IN s.t. if n,m ≥ Nε |f ′n(x)− f ′m(x)| ≤ ε, ∀x ∈ I.

Now apply the Lagrange mean value theorem to fn−fm on the interval
[x, a] (or [a, x]) with x ∈ I. Finally we get:

|(fn(x)− fm(x))− (fn(a)− fm(a))| ≤ ε |x− a|.

Dividing by x− a, (x 6= a) it results:

|ϕn(x)− ϕm(x)| ≤ ε, ∀x 6= a,∀n,m ≥ Nε.

The continuity of the functions ϕn and ϕm at a implies

|ϕn(x)− ϕm(x)| ≤ ε, ∀x ∈ I,∀n,m ≥ Nε.

It is now clear that ϕn
u−→ ϕ and the theorem is proved.
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Exercises

1. Let fn : X 7→ IR and let (an)n be a sequence s.t. an −→ 0.
If |fn(x)− f(x)| ≤ an, ∀x ∈ X then fn

u−→ f .
Hint sup

x∈X
|fn(x)− f(x)| ≤ an.

2. Test for uniform convergence the sequences:
(i) fn(x) = xn, x ∈ [0, a], 0 < a < 1.
(ii) gn(x) = (x+ n)−1, x ∈ (0,∞).
Hint Both sequences are uniformly convergent to 0.

3. Study the pointwise and uniform convergence of the following
sequences of functions:
(i) fn : (0, 1) 7→ R, fn(x) = (nx+ 1)−1, n ≥ 0.
(ii) gn : [0, 1] 7→ R ; fn(x) = xn − x2n ,n ≥ 0.
Hint (i) Let x > 0; lim

n→∞
fn(x) = lim

n→∞
(nx + 1)−1 = 0, hence fn con-

verges pointwise to the null function.
Obviously, sup

x∈(0,1)
|fn(x)| = sup

x∈(0,1)

∣∣∣(nx+ 1)−1
∣∣∣ = 1 hence fn is not uni-

formly convergent.
(ii) gn

p−→ 0. The uniform convergence:

sup
x∈(0,1)

|gn(x)| = sup
x∈(0,1)

|xn − x2n| = gn

(
1
n
√

2

)
=

1

4
,

hence gn is not uniformly convergent.

4. Test for uniform convergence:
(i) fn(x) = sin x

n
, x ∈ IR.

(ii) gn(x) =
√
x2 + 1

n2 , x ∈ IR.

Hint (i) Take xn = nπ
2
; then fn(xn) 6−→ 0.

(ii) gn is uniformly convergent to the function g(x) = |x|.

5. Let un : R 7→ R, un(x) = x+ 1
n
.

Study the pointwise and uniform convergence of un and u2
n.

Hint The sequence un is uniformly convergent to u(x) = x, while
u2
n is pointwise convergent to u2(x) = x2, but fails to be uniformly
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convergent:

lim
n→∞

sup
x∈R
|u2
n(x)− x2| = lim

n→∞
sup
x∈IR

∣∣∣∣2xn +
1

n2

∣∣∣∣ =∞.

6. Let fn(x) = nxe−nx
2
, x ∈ [0, 1]. Can this sequence be integrated

term by term on [0, 1]?

Hint First, fn
p−→ 0; the sequence of the integrals

∫ 1

0
fn −→ 2−1.

7. Let fn(x) = 1
n

arctanxn, x ∈ IR. Can this sequence be differen-
tiated term by term ?
Hint First, fn

u−→ 0; the sequence f ′n is not pointwise convergent
(check at x = −1).

8. Let un : (0,∞) 7→ R, un(x) = e−nx. Test the pointwise and
uniform convergence of un and u′n.
Hint Both un and u′n are pointwise convergent to 0 but none of them
is uniformly convergent.

9. Let fn(x) =
sinnx

n
and gn(x) =

sinnx

n2
.

Can these sequences be differentiating term by term?
Hint The answer is affirmative for gn, but negative for fn.

10. Test for pointwise and uniform convergence:
(i) fn(x) = xne−nx, x ≥ 0.
(ii) gn(x) = nx(1 + n+ x)−1, x ∈ [0, 1].
(iii) hn(x) = (enx − 1) (enx + 1)−1 , x < 0.

2.2 Series of functions and power series

The theory of convergence of series of functions can be reduced to that
of sequences of functions.

If (fn)n is a sequence of functions, fn : X 7→ IR then we consider
the sequence of partial sums (Sn)n defined by Sn = f0 + f1 + ...fn;
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the series
∑
n

fn is the pair of these two sequences (fn)n and (Sn)n.

Definition
The series

∑
n

fn is said to be pointwise convergent if the sequence

(Sn)n is pointwise convergent. If Sn
p−→ S then S is the pointwise

sum of the series and is denoted by
∑
n

fn.

The series
∑
n

fn is said to be uniformly convergent if the sequence

(Sn)n is uniformly convergent; if Sn
u−→ S then S is the uniform sum

of the series and is denoted by the same symbol,
∑
n

fn.

Theorem (Cauchy Criterion)
The series

∑
n

fn is uniformly convergent iff:

∀ε > 0, ∃Nε ∈ IN s.t. if ∀k ∈ IN?, ∀n ≥ Nε

∣∣∣∣∣∣
k∑
j=1

fn+j(x)

∣∣∣∣∣∣ ≤ ε, ∀x ∈ X.

Using this theorem a very useful test for uniform convergence of
series of functions is obtained.

Proposition (test for uniform convergence of series)
Let

∑
n

fn be a series of functions and let
∑
n

an be a convergent series

of positive numbers and suppose that |fn(x)| ≤ an, ∀n ∈ IN, ∀x ∈ X.
Then

∑
n

fn is uniformly convergent.

Proof We have |fn+1(x)+fn+2 + ...+fn+k(x)| ≤ an+1 + ...+an+k, ∀x ∈
X; now apply Cauchy criterion.

Example

Let fn(x) =
sinnx

n3
, x ∈ IR. The series is uniformly convergent because

one can take an = 1
n3 in the above proposition.

Theorem (transfer of continuity)
Let I ⊆ IR be an interval, let a ∈ I and let fn : I 7→ IR be continuous
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functions at a. If
∑
n

fn is uniformly convergent then its sum is contin-

uous at a.
Proof Apply the corresponding theorem for sequences to (Sn)n.

Example

The sum of the series
∑
n

sinnx

n3
is continuous (see the above example).

Theorem (term by term integration )
If
∑
n

fn is a uniformly convergent series of continuous functions on [a, b]

with sum S then
∫ b

a
S =

∑
n

∫ b

a
fn.

Proof Apply the theorem on integration term by term for sequences
of functions to the sequence of partial sums, (Sn)n.

Example

Let S(x) =
∑
n≥1

sinnx

n3
; as the hypothesis of the above theorem are ful-

filled, we have:∫ π

0
S(x)dx =

∑
n≥1

∫ π

0

sinnx

n3
dx =

∑
n≥1

1− (−1)n

n4
.

Theorem ( term by term differentiation)
If
∑
n

fn is a series of differentiable functions on an interval I s.t:∑
n

fn is pointwise convergent to f and∑
n

f ′n is uniformly convergent to g, then f is differentiable and f ′ = g.

Proof Apply the corresponding theorem for sequences of functions.

Example

If S(x) =
∑
n≥1

sinnx

n3
, then S ′(x) =

∑
n≥1

(
sinnx

n3

)′
=
∑
n≥1

cosnx

n2
because

the series
∑
n≥1

cosnx

n2
is uniformly convergent (why ?).
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Definition (power series)
A power series is a series of the form

(?)
∑
n≥0

anz
n = a0 + a1z + a2z

2 + ...+ anz
n + ...

Clearly, this is a series of functions defined by fn(z) = anz
n, z ∈ C.

The complex numbers an are the coefficients of the power series. If
an ∈ IR, ∀n ∈ IN and x ∈ IR the power series

(? ?)
∑
n≥0

anx
n = a0 + a1x+ a2x

2 + ...+ anx
n + ...

is a power series in IR.

We could also consider power series in z − z0 (z0 ∈ C, fixed):∑
n≥0

an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + ...+ an(z − z0)
n + ...

Setting w = z − z0 one can reduce the study of such series to (?).

We shall consider mainly series in IR, but there are reasons to start
with power series in C. Of course, we are interested in the convergence
of power series.

Proposition
Let 0 6= z0 ∈ C be such the sequence (anz

n
0 )n is bounded and let

0 < r < |z0|; then:
(i) for every z ∈ C, |z| < |z0|, the series (?) is absolutely convergent
(as a series of numbers).
(ii) the series (?) is uniformly convergent on the closed disk
D′(0, r) = {z ∈ C ; |z| ≤ r}.
Proof (i) Let M > 0 be s.t. |anzn0 | ≤ M, ∀n ∈ IN and let z ∈ C s.t.
|z| < |z0|; then:

|anzn| ≤
∣∣∣∣∣ an zn0 zn

zn0

∣∣∣∣∣ ≤M
∣∣∣∣ zz0

∣∣∣∣n
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Now observe that
∣∣∣∣ zz0

∣∣∣∣ < 1 and apply the comparison test.

(ii) Let 0 < r < |z0|; if |z| < r then |an zn| ≤ M
∣∣∣ r
z0

∣∣∣n; now apply the

test for uniform convergence of series (it obviously works for complex
valued functions too).

The convergence (pointwise and uniform) of the power series (?) is
clarified by:

Theorem (radius of convergence)
Given the series (?) then there is an unique R ∈ [0,∞] s.t:
(i) if R = 0 the series (?) converges only for z = 0 and if R = ∞ the
series is absolutely convergent for every z ∈ C;
(ii) if 0 < R < ∞ then for |z| < R the series (?) is absolutely conver-
gent and for |z| > R the series is divergent;
(iii) if 0 < r < R the series (?) is uniformly convergent on the closed
disk D′(0, r).
R is called the radius of convergence of the power series (?).
Proof TakeR = sup{r ; r ≥ 0 s.t. the series

∑
n

|an|rn is convergent}

(this set is non empty); then R ∈ [0,∞].
(i) and (ii) If R = 0 the result is obvious. If 0 6= |z| < R then we
find |z| < r < R s.t. the series

∑
n

|an|rn be convergent, so
∑
n

|anzn| is

convergent as well.
If |z| > R and if the series

∑
n

anz
n would be convergent then z 6= 0 and

the sequence (anz
n)n is bounded. Taking |z| > r > R and applying the

above proposition the series
∑
n

|an|rn would be convergent, contradict-

ing the definition of R.
(iii) We leave the proof as an exercise.

Remark
(i) The above theorem gives no information about points on the
circle |z| = R (if 0 < R <∞.
(ii) For the real series (? ?) we have:
for −R < x < R the series is absolutely convergent;
for |x| > R the series is divergent;
if 0 < r < R the series is uniformly convergent on [−r, r].
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We shall accept the following formulas for computing the radius of
convergence:

Proposition

(i) If the limit ` = lim
n

∣∣∣∣∣ anan+1

∣∣∣∣∣ exists (in [0,∞]), then R = `.

(ii) If the limit ` = n

√
|an| exists (in [0,∞]) then R = `−1, with the

conventions 1
0

=∞ and 1
∞ = 0.

Example
(i) Consider the geometric series 1 + z + z2 + ... + zn + ...; obviously,
the radius of convergence is R = 1 (apply the above proposition (i)).

(ii) Consider the (very important) power series 1+
z

1!
+
z2

2!
+ ...+

zn

n!
+ ...

Then the radius of convergence is R =∞.

From now on, up to the end of this section, we consider power series
of type (? ?). The following theorem is crucial.

Theorem
Let the radius of convergence of the power series

∑
n

anx
n be R > 0.

If f is the (pointwise) sum of the series on (−R,R), then:
(i) f is continuous.
(ii) f has derivatives of any order and these derivatives can be ob-
tained by term by term differentiation .
(iii) The series can be term by term integrated on every compact inter-
val [a, b] ⊂ (−R,R).
Proof (i) Take x0 ∈ (−R,R) and let 0 < r < R s.t. x0 ∈ (−r, r). By
applying the transfer of continuity on [−r, r] we obtain the result.
(ii) First, let us observe (exercise !) that the (power) series of the
derivatives

∑
n≥1

nanx
n−1 has the same radius of convergence as

the initial series. Using this fact and reasoning as in (i) we obtain the
result by term by term differentiation theorem.
(iii) A trivial application of the term by term integration theorem.
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Remark
Generally, we do not have uniform convergence on (−R,R) but only
on compact intervals. That’s why we need the trick in the proof of (i)
above; of course, (ii) implies (i), but we prefer to state it apart.

Definition
Let

∑
n≥0

anx
n be a power series with radius of convergence R > 0 and

let f : (−R,R) 7→ IR be its sum. In this case we shall say, also, that∑
n≥0

anx
n is the expansion of the function f in a power series.

Proposition

Let f(x) =
∑
n≥0

anx
n, x ∈ (−R,R). Then an = f (n)(0)

n!
, ∀n ∈ IN; as

usual, f (n) denotes the n−derivative of f .
Proof Obviously a0 = f(0); then by applying the previous theorem
f ′(x) =

∑
n≥1

nanx
n−1, so a1 = f ′(0). The result follows by induction.

Remark
An important consequence of the above result is the fact that the ex-
pansion (in a power series) of a function is unique (if it exists !).

Examples
(i) We start with the geometric series:

1

1− x
= 1 + x+ x2 + ...+ xn + ..., |x| < 1.

Changing x into −x we get:

1

1 + x
= 1− x+ x2 − x3 + ...+ (−1)nxn + ..., |x| < 1

By integrating term by term (on what interval ?) we get:

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ ...+ (−1)n

xn+1

n+ 1
+ ..., |x| < 1
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(ii) Analogously, starting with:

1

1 + x2
= 1− x2 + x4 − x6 + ...+ (−1)nx2n + ..., |x| < 1,

we obtain:

arctanx = x− x3

3
+
x5

5
− x7

7
+ ...+ (−1)n

x2n+1

2n+ 1
+ ..., |x| < 1.

So we have expanded the functions ln(1 + x) and arctan x in power
series (on the corresponding intervals).

We mention (without proof) an important theorem of Abel (see [8]):

Theorem (Abel)
If the series of numbers

∑
n

an is convergent and if

f : (−1, 1) 7→ IR, f(x) =
∑
n

anx
n, then lim

x↗1
f(x) =

∑
n

an.

Example
Starting with the alternating harmonic series, the expansion:

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ ...+ (−1)n

xn+1

n+ 1
+ ..., |x| < 1

gives that:

ln 2 = 1− 1

2
+

1

3
− 1

4
+ ...+ (−1)n

1

n+ 1
+ ...,

so we have computed the sum of the alternating harmonic series.

Exercises
1. Compute arctan 1 = π

4
with an absolute error less than 10−1. De-

duce an approximation of π with error less than 10−2.

Hint Starting with the convergent series
∑
n≥0

(−1)n
1

2n+ 1
and by ap-

plying Abel’s theorem to the expansion

arctanx = x− x3

3
+
x5

5
− x7

7
+ ...+ (−1)n

x2n+1

2n+ 1
+ ..., |x| < 1
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we obtain the sum
∑
n≥0

(−1)n
1

2n+ 1
= arctan 1 =

π

4
. Now approximate

the sum of the alternating series of the left side.

2. Study the pointwise and uniform convergence of the series
∑
n≥0

e−nx

on (0,∞).
Hint Put e−x = t, etc.

3. Can be the series
∞∑
n=1

sinnx

2n
term by term differentiated on IR?

Hint
∣∣∣∣sinnx2n

∣∣∣∣ ≤ 1

2n
,∀x ∈ IR, so the series is uniformly convergent on

IR. Same is true for the series of the derivatives, hence the answer is
affirmative.

4. Consider the series
∑
n≥1

sinnx

n2
, x ∈ IR. Can it be term by term

differentiated ?
Hint The answer is negative (the series of the derivatives is not point-
wise convergent).

5. Let a, b ∈ IR, 0 < a < b; check if the series
∑
n≥1

(x+ n)2

n4
can be

term by term differentiated on [a, b].
Hint We have (x+ n)2 ≤ (b+ n)2,∀x ∈ [a, b], so

∑
n≥1

(x+ n)2

n4
≤
∑
n≥1

(b+ n)2

n4
, ∀x ∈ [a, b].

Analogously, the series of the derivatives is uniformly convergent on
[a, b], so the answer is positive.

6. Consider the series
∑
n≥1

(−1)n
x2 + n

n2
, x ∈ R.

(i) Prove that the series is pointwise convergent for every x ∈ IR.
(ii) Study the uniform convergence on every closed and bounded inter-
val.
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(iii) Study the uniform convergence on IR.
(iv) Is the sum a continuous function ?
(v) Same questions for the series of the derivatives.
(vi) Can be the series term by term differentiated?

Hint Study the series
∑
n

(−1)n
x2

n2
and

∑
n

(−1)n
1

n
.

7. Let
∑
n≥1

nxn + x

n2 + 1
, x ∈ (−1, 1).

(i) Study the pointwise and uniform convergence
(ii) Can the series be term by term differentiated?

Hint Study the series x
∑
n≥1

1

n2 + 1
and

∑
n≥1

n

n2 + 1
xn.

8. Compute the radius of convergence and study the convergence

of the series:
∑
n≥1

zn

n
,
∑
n≥1

(−1)n

n
zn and

∑
n≥1

n!zn.

Hint The first two series have the radius of convergence R = 1. The
first one is divergent if z = 1 and convergent for |z| = 1, z 6= 1. Analo-
gously for the second one. The third series has the radius of convergence
0, so it it convergent only for z = 0.

9. Compute the sum of the series
∑
n≥0

(−1)n

3n+ 1
by term by term

integration of the power series
∑
n≥0

(−1)n

3n+ 1
x3n+1.

Hint By applying Abel theorem we get:

∑
n≥0

(−1)n

3n+ 1
= lim

x→1

∑
n≥0

(−1)n

3n+ 1
x3n+1 =

= lim
x→1

∫ x

0

∑
n≥0

(−1)nx3n dx = lim
x→1

∫ x

0

dx

1 + x3

10. Compute the sum of the series
∑
n≥0

n+ 1

4n
by term by term

differentiation of the power series
∑
n≥0

xn+1.
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Hint If |x| < 1, then:

∑
n≥0

(n+ 1)xn =

∑
n≥0

xn+1

′ = 1

(1− x)2
, and put x =

1

4

2.3 Elementary functions

The aim of this section is to define (by using power series) some basic
transcendental elementary functions, such as the exponential, sine (sin)
and cosine (cos).
We start by defining the exponential in the complex domain taking ad-
vantage of the possibility of obtaining the (real) sine and cosine from it.
This point of view (due to Euler) is, not only elegant, but very useful in
showing the connection between the exponential and the trigonometric
functions.

The exponential function
Define the complex exponential function by:

(?) exp(z) = 1 +
z

1!
+
z2

2!
+ ...+

zn

n!
+ ...

As the radius of convergence of the series is ∞ so exp : C 7→ C.

The basic properties of exp are:
1. exp(0) = 1
2. exp(z + w) = exp(z) exp(w), ∀z, w ∈ C.
The first property is trivial. To obtain the second, we can use the fol-
lowing theorem about the multiplication of series (which is interesting
by itself):

Theorem
Let

∑
n

an,
∑
n

bn be two series of complex numbers and define the

product series
∑
n

cn by cn = a0bn + a1bn−1 + ...+ anb0 =
n∑
k=0

akbn−k.
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If
∑
n

an is absolutely convergent and
∑
n

bn is convergent then the prod-

uct series is convergent and

(∑
n

an

)
·
(∑

n

bn

)
=
∑
n

cn.

For the proof see, for example, [4].
Now use this theorem to prove the above second property (exercise).

A consequence of properties 1 and 2 is that

exp(z) exp(−z) = exp(0) = 1, so exp(z) 6= 0,∀z ∈ C.

Remark
We can give an algebraic form of property 2 by considering the abelian
groups (C,+) and (C?, ·). Then exp : C 7→ C? is a group homomor-
phism.

The real exponential function is the restriction of exp to IR:

(??) exp(x) = 1 +
x

1!
+
x2

2!
+ ...+

xn

n!
+ ..., ∀x ∈ IR.

Using the basic properties of power series we get:
(i) exp(x) > 0, ∀x ∈ IR.
In fact exp(x) 6= 0, ∀x ∈ IR, so the continuity of exp implies that it
keeps a constant sign and exp(0) = 1, so we get the result.
(ii) The exponential has derivatives of any order and these derivatives
can be obtained by term by term differentiation; obviously, by differ-
entiating the equality (??) we get

exp′ = exp

and by induction exp(n) = exp.
(iii) The exponential is strictly increasing and lim

x→∞
exp(x) =∞; in

fact exp′ = exp > 0. Moreover, exp(x) > x, ∀x > 0.
(iv) lim

x→−∞
exp(x) = 0.

(v) The exponential exp : IR 7→ (0,∞) is an isomorphism between
the groups (IR,+) and ((0,∞), ·). The inverse of this isomorphism is
denoted by ln (logarithm). The properties of the logarithm are easily
deduced from those of the exponential.
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Remark
(i) One can ask if the function exp defined by (?) is the same as the
exponential ex already studied at the college. The answer is yes because
there exists an unique function f : IR 7→ IR satisfying the conditions
f ′ = f and f(0) = 1; in fact, if f is such a function then(

f

exp

)′
=
f ′ exp− exp f

exp2
= 0,

so there is k ∈ IR s.t. f = k exp. But f(0) = exp(0) = 1 so f = exp.
(ii) The previous remark gives a hint for the proof of the basic property
exp(x + y) = exp(x) exp(y) in the real case. Actually, for c ∈ IR we
have: (exp(c− x) exp(x))′ = 0, so exp(c−x) exp(x) = exp(c), ∀x ∈ IR;
take now c = x+ y.
(iii) Due to these remarks, we use the notation ez = exp(z), z ∈ C.

The trigonometric functions

From (?) we obtain ez = ez, ∀z ∈ C. So if x ∈ IR we have that
|eix|2 = eix e−ix = 1 so |eix| = 1, ∀x ∈ IR.

Definition
Define the trigonometric functions sine and cosine by:

(? ? ?) sinx = =(eix) and cosx = <(eix), ∀x ∈ IR

So, by the very definition, we have the Euler formula:

eix = cosx+ i sinx, ∀x ∈ IR

As eix = 1, ∀x ∈ IR, we obtain:

sin2 x+ cos2 x = 1 so | sinx|, | cosx| ≤ 1, ∀x ∈ IR

Replacing z = ix in (?) and separating the real and imaginary parts
we get the (real) power series expansions of cos and sin:

(? ? ??) cosx =
∑
n≥0

(−1)n

(2n)!
x2n, sinx =

∑
n≥0

(−1)n

(2n+ 1)!
x2n+1, ∀x ∈ IR.
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Clearly, cos and sin have derivatives of any order and these deriva-
tives can be obtained by term by term differentiation. We have and:
cos′ = − sin and sin′ = cos.

The number π
As cos 0 = 1 (and cos is continuous as a sum of a power series), then
the function cos is strictly positive in a small interval centered at 0.
Define the set M = {x ; x > 0, cosx = 0}. We want to prove that
M 6= ∅. Let us first observe that this is not obvious from the above
definitions (all we have until now).

Proposition
The set M is non empty.
Proof Suppose, by contradiction, that M = ∅; then cos has to keep
a constant sign (the continuity !) on (0,∞), so cos x > 0,∀x > 0
due to cos 0 = 1. It results that sin is strictly increasing and as
sin 0 = 0, we have that sinx > 0,∀x > 0. Take a > 0 and con-
sider the function f : [a,∞), f(x) = cos x + x sin a; the derivative
f ′(x) = − sinx + sin a < 0, ∀x > a, so f is strictly decreasing on
[a,∞). But as cos is a bounded function we get that lim

x→∞
f(x) = ∞

and this contradicts the fact that f is decreasing; so M 6= ∅.

We now define the number π; take m = inf M . Then m > 0 and
m ∈M (prove these statements). Define π = 2m. In this way, π

2
is the

least positive zero of cosine.

Remark
π is just ”a name” for a real number whose existence was proved. Now

(from the definition): ei
π
2 = cos

π

2
+ i sin

π

2
= i (why is sin π

2
= 1 ?).

From the property (ii) of the exponential we obtain eiπ = −1 and
e2πi = 1, so ez+2πi = ez, ∀z ∈ C. It results that the complex exponen-
tial is periodic on C (not on the real line).
By analyzing the functions cos and sin on [0, 2π] we can easily obtain
the well known properties of trigonometric functions (periodicity, etc).
We leave this analysis to the reader.
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The binomial series
For x > 0 and α ∈ IR define xα = eα lnx. An important power series
expansion is given bellow:

Proposition
One has for α ∈ IR:

(1+x)α = 1+
α

1!
x+

α(α− 1)

2!
x2+...+

α(α− 1)...(α− n+ 1)

n!
xn+..., |x| < 1

The power series in the right side is called the binomial series. We
do not prove this formula (see [1]), just observe that it is a generaliza-
tion of a well known formula in combinatorics.

Example
Find the power expansion of the function arcsin : (−1, 1) 7→ (−π

2
, π

2
).

Solution We have (arcsinx)′ =
(
1− x2

)− 1
2 , |x| < 1; now apply the bi-

nomial series for α = −1
2
, replace x by −x2 and integrate term by term.

Exercises

1. By using Euler formula prove:
sin(x+ y) = sinx cos y + sin y cosx,
cos(x+ y) = cos x cos y − sinx sin y,∀x, y ∈ IR.
Hint Use ei(x+y) = eixeiy, ∀x, y ∈ IR.

2. Complex Riemann function

For z ∈ C, consider the series
∑
n≥1

1

nz
, (by definition: nz = ez lnn).

Prove the absolutely convergence of the series for <z > 1.

Hint
∣∣∣∣ 1

nz

∣∣∣∣ =
1

n<z
. The sum of the series is the Riemann function.

3. Compute (by using power series) the integral
∫ 1

0

sinx

x
dx, with

an error ε < 10−2.
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Hint Use the expansion of sine and integrate term by term:∫ 1

0

sinx

x
dx =

∫ 1

0

∑
n≥0

(−1)n

(2n+ 1)!
x2n dx =

∑
n≥0

(−1)n

(2n+ 1)! (2n+ 1)
.

Now approximate the alternating series.

4. Compute the integral
∫ 1

0

arctanx

x
dx with an error ε < 10−2.

Hint Use the expansion of arctan.

5. Compute the integral
∫ 1

0

ln(1 + x)

x
dx with an error ε < 102.

Hint Use the expansion of ln(1 + x).

6. Expand in a power series arcsin and prove:

1 +
∑
n≥1

1 · 3 · 5... · (2n− 1)

2 · 4 · 6...(2n)
· 1

2n+ 1
=
π

2
.

Hint By using the binomial series ( α = −1
2
) we get:

(arcsinx)′ =
1√

1− x2
= 1 +

∑
n≥1

1 · 3 · 5... · (2n− 1)

2 · 4 · 6...(2n)
x2n,∀ |x| < 1.

Term by term integration gives:

arcsinx = x+
∑
n≥1

1 · 3 · 5...(2n− 1)

2 · 4 · 6...(2n)
· 1

2n+ 1
x2n+1, ∀x ∈ (−1, 1).

The series is convergent for x = 1 (Raabe’s test); now apply Abel the-
orem.

7. Expand in a power series ln(x+
√

1 + x2) and prove:

1 +
∑
n≥1

(−1)n
1 · 3 · 5...(2n− 1)

2 · 4 · 6...(2n)
· 1

2n+ 1
= ln(1 +

√
2).

Hint Same method as above.
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2.4 Taylor formulas

We shall use the following notations:
Let ∅ 6= I be an interval (of real numbers) not reduced to a point and
let f : I 7→ IR be a map. We say that f ∈ C0(I) if f is continuous;
if n ∈ IN, n ≥ 1 we say that f ∈ Cn(I) if f has derivatives up to the
order n (included) and these derivatives are continuous. So, for exam-
ple, f ∈ C1(I) if f is differentiable on I and f ′ is a continuous function.
If I is not open then at the end points of I we mean one sides derivatives.

Let f : I 7→ IR and a ∈ I and suppose that f (n)(a) exists ( finite).
We define the Taylor polynomial of order n for f at a by:

Pn(a, x, f) = f(a) +
f ′(a)

1!
(x−a) +

f ′′(a)

2!
(x−a)2 + ...+

f (n)(a)

n!
(x−a)n

The basic property of the Taylor polynomial is (as it is easy to check)
that the values at a of f and of its derivatives coincide up to the order
n with the corresponding values of Pn(a, x, f):

f (k)(a) = P (k)
n (a, x, f), ∀k = 0, 1, ..., n.

One can say that Pn(a, x, f) is a kind of approximation of f around a.
Let us define Rn(a, x, f) = f(x)− Pn(a, x, f), x ∈ I, so, trivially:

(?) f(x) = Pn(a, x, f) +Rn(a, x, f),∀x ∈ I.

A Taylor formula is a relation of type (?) as above together with
an estimation of Rn(a, x, f) (called the remainder of order n in
Taylor formula).

We shall give, without proofs (see [1], [4], [5], [8]) two Taylor for-
mulas which are very useful in the local study and approximation of
functions.

The Taylor-Lagrange formula
This is a generalization of the mean-value theorem formula of Lagrange.
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Theorem
Let f ∈ Cn[a, b] and f ∈ Cn+1(a, b). Then there exists c ∈ (a, b) s.t:

(??) f(b) = f(a)+
f ′(a)

1!
(b−a)+...+

f (n)(a)

n!
(b−a)n+

f (n+1)(c)

(n+ 1)!
(b−a)n+1

In this way the remainder can be written as:

Rn(a, b, f) =
f (n+1)(c)

(n+ 1)!
(b− a)n+1

So, for example, if there exists M > 0 s.t.
∣∣∣f (n+1)(x)

∣∣∣ ≤ M, ∀x ∈ (a, b)
then we obtain the estimation :

|Rn(a, b, f)| ≤M
(b− a)n+1

(n+ 1)!

Remark
Of course one can apply (??) on every interval [a, x], ∀ a < x ≤ b; (what
if we consider intervals [x, a] ?)

The Taylor-Young formula
Suppose f : I 7→ IR and that f (n)(a) exists (n ≥ 1).

Proposition
In the above conditions we have:

(? ? ?) lim
x→a

f(x)− f(a)−∑n
k=1

f (k)(a)
k!

(x− a)k

(x− a)n
= 0

For n = 1 this is the definition of the derivative f ′(a).

Remark
Intuitively, (? ? ?) says that the remainder in the Taylor formula tends
to zero as x tends to a faster than (x − a)n (the meaning faster is
(? ? ?)).
To obtain the Taylor-Young formula we put:

f(x)− f(a)−∑n
k=1

f (k)(a)
k!

(x− a)k

(x− a)n
= ρ(x), x 6= a
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Then we obtain the Taylor-Young formula:

Theorem

f(x) = f(a) +
n∑
k=1

f (k)(a)

k!
(x− a)k + ρ(x)(x− a)n, x 6= a

and lim
x→a

ρ(x) = 0.

Equivalently, if we define ρ(a) = 0 we can write:

f(x) = f(a) +
n∑
k=1

f (k)(a)

k!
(x− a)k + ρ(x)(x− a)n,∀x ∈ I

and ρ is continuous and vanishes at a.

Landau’s symbols O (big O) and o (small o)
Let ϕ be a map defined on an open interval I and x0 ∈ I.
We define the sets O(ϕ) and o(ϕ) as follows:

(i) f ∈O(ϕ) if the map f is defined on a neighborhood of x0 and
there exists a neighborhood V of x0 and K ≥ 0 s.t.

|f(x)| ≤ K |ϕ(x)|,∀x ∈ V.

(ii) f ∈o(ϕ) if the map f is defined on a neighborhood of x0 and

∀ε > 0, ∃δε > 0 s.t. if |x− x0| < δε then |f(x)| ≤ ε |ϕ(x)|.

One can also write f =O(ϕ) or f =o(ϕ).

Proposition
Let ϕ and x0 be as above and ϕ(x) 6= 0 if x 6= x0. Then:

(i) f ∈O(ϕ) ⇐⇒ f

ϕ
is bounded in a neighborhood of x0 (without x0).

(ii) f ∈o(ϕ) ⇐⇒ lim
x→x0

f(x)

ϕ(x)
= 0.

We now can restate Taylor-Young formula by using the symbols O
and o as follows:
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f(x) =
n∑
k=0

(x− a)k

k!
f (k)(a) + o ((x− a)n) .

and (if f (n+1)(a) exists):

f(x) =
n∑
k=0

(x− a)k

k!
f (k)(a) + O

(
(x− a)n+1

)
.

The first formula is obvious. To prove the second one, we have:

f(x) =
n∑
k=0

(x− a)k

k!
f (k)(a) +

f (n+1)(a)

(n+ 1)!
(x− a)n+1 + o

(
(x− a)n+1

)
and obviously:

f (n+1)(a)

(n+ 1)!
(x− a)n+1 + o

(
(x− a)n+1

)
= O

(
(x− a)n+1

)
Examples

The usual power expansions can be restated with O :

ex = 1 +
x

1!
+
x2

2!
+ ...+

xn

n!
+ O

(
xn+1

)

sinx = x− x3

3!
+
x5

5!
+ ...+ (−1)n

x2n+1

(2n+ 1)!
+ O

(
x2n+3

)

cosx = 1− x2

2!
+ ...+ (−1)n

x2n

(2n)!
+ O

(
x2n+2

)
Extrema of functions of one variable
Let I ⊆ IR be an interval, a ∈ I and f : I 7→ IR.

Then a is said to be a local maximum (minimum) point for f if there
is a neighborhood U of a s.t. f(x) ≤ f(a) (f(x) ≥ f(a)), ∀x ∈ U ∩ I.
Local minima or maxima points are called local extrema.
We suppose known (from the school) Fermat’s theorem :

If I is an open interval, f is differentiable at a and a is local ex-
tremum point for f , then f ′(a) = 0.

The converse is false, so we need also sufficient conditions for a
critical point (f ′(a) = 0) to be an extremum. Below we obtain such
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conditions based on Taylor’s formula.

Let I ⊆ IR be an open interval, f of class Ck, (k ≥ 2), on I and
a ∈ I a critical point for f . Let us suppose the first k − 1 (k ≥ 2)
derivatives of f at a are zero:

f ′(a) = f ′′(a) = ... = f (k−1)(a) = 0

and f (k)(a) 6= 0. Applying Taylor-Young formula we obtain:

f(x)− f(a) =
f (k)(a)

k!
(x− a)k + ρ(x) (x− a)k =

=

(
f (k)(a)

k!
+ ρ(x)

)
(x− a)k,

ρ being a continuous function vanishing at a.
So we get the following test:
1. If k is even, then a is an extreme point, more precisely:

(i) if f (k)(a) > 0, then a is a local minimum point.
(ii) if f (k)(a) < 0, then a is a local maximum point.

2. If k is odd, then a is not an extreme point.

Exercises
1. Compute the Taylor polynomial of order n at 0 of f(x) = ex.

Hint Obviously, f (n)(x) = ex.

2. (i) Compute the Taylor polynomial of order 2n + 1 at 0 of the
function g(x) = sinx.
(ii) Compute the Taylor polynomial of order 2n at 0 for cosx.
Hint For every x ∈ IR and n ∈ IN one can prove (by induction):

sin(n)(x) = sin
(
x+ nπ

2

)
, cos(n)(x) = cos

(
x+ nπ

2

)
, etc.

4. Find the affine and quadratic approximations of the map
f(x) = x lnx about a = 1.
Hint Affine and quadratic approximations are Taylor polynomials of
first degree and second degree, respectively. We have:
P1(x) = f(1) + f ′(1)(x− 1) = x− 1 and
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P2(x) = f(1) + f ′(1)(x− 1) + 1
2!
f ′′(1)(x− 1)2 = (x− 1) + 1

2
(x− 1)2.

5. Prove Taylor’s Theorem:
If f ∈ C∞[a, b] =

⋂
k≥0

Ck[a, b] and if there exists M > 0 s.t.

|fn(x)| ≤ M, ∀x ∈ [a, b], ∀n ∈ IN,

then the Taylor series of f about a

f(a) +
f ′(a)

1!
(x− a) + ...+

f (n)(a)

n!
(x− a)n + ...

is uniformly convergent on [a, b] to the function f .
Hint Apply the Taylor-Lagrange formula.

6. Prove that there are functions f ∈ C∞(IR) for which the associ-
ated Taylor series has not the sum f .

Hint An usual example is: f : R 7→ R, f(x) =

{
e−

1
x2 if x 6= 0
0 if x = 0

7. Approximate
√

101 with an error ε < 10−2.

Hint We have
√

101 = 10
√

1 + 1
100

and use the Taylor polynomial at 0

of the function f(x) =
√

1 + x.

8. Compute e−1 with error less than 10−3.
Hint Applying Taylor-Lagrange formula, for every x ∈ IR there is
ξ ∈ (0, x) (or (x, 0)) s.t:

ex = 1 +
x

1!
+ ...+

xn+1

n!
+

ξn+1

(n+ 1)!

So there is ξ ∈ (−1, 0) st:

e−1 = 1− 1

1!
+

1

2!
− ...+ (−1)n

n!
+ (−1)n+1 eξ

(n+ 1)!

But eξ < 1, so:

|Rn| =
eξ

(n+ 1)!
<

1

(n+ 1)!
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The least n ∈ N s.t. 1
(n+1)!

< 10−3 is n = 6, etc.

9. Find an upper bound for the error in the approximation

e2 ≈ 1 +
2

1!
+

22

2!
+

23

3!
+

24

4!
+

25

5!

Hint If in Taylor-Lagrange formula for ex we put x = 2 and n = 5, the
remainder satisfies:

R5 =
eξ

6!
≤ e2

6!
<

9

6!
= 0.0125

10. Find the least n for which the Taylor polynomial of order n
approximates the function ex on the interval [−1, 1] with error less
than 10−3.
Hint The remainder of order n is

Rn =
eξ

(n+ 1)!
xn+1,

with an appropriate ξ ∈ [−1, 1]; we have:

|Rn| ≤
e

(n+ 1)!
<

3

(n+ 1)!
, etc.

11. Compute the limits (by using Taylor polynomials)

(i) lim
x→0

ex − 1

x
.

(ii) lim
x→0

sinx

x
.

(iii) lim
x→0

1− cosx

x2
.

12. Find the extrema of the following functions:
(i) f(x) = ex x−e, x > 0; decide who is larger: eπ or πe?

(ii) f(x) = arcsin
2x

1 + x2
, x ∈ IR.

(iii) f(x) = |x| ln |x| if x 6= 0 and f(0) = 0.
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Chapter 3

Functions of several variables

3.1 The Euclidean space IRn

Definition
For every natural number n define:

IRn = {x = (x1, x2, ..., xn) ; xk ∈ IR,∀k = 1, 2, ..., n},

hence IRn is the set of all (ordered) n-tuples of real numbers.
For a better understanding, if x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn)
then x = y iff x1 = y1, x2 = y2, ..., xn = yn.
For n = 1, then IR1 = IR, for n = 2 then IR2 is the usual Euclidean
”plane” and for n = 3, then IR3 is the usual Euclidean ”space”. The
elements of IRn are called points. If x = (x1, x2, ..., xn), then the real
numbers x1, x2, ...xn are called the components of x (more precisely
the first component, the second component, ..., the n-th component).
So equality in IRn means equality of the (corresponding) components.

As usually, we shall denote points in IR2 by (x, y) and in IR3 by
(x, y, z).

The vector structure on IRn

For every x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) and α ∈ IR define:

x+ y = (x1 + y1, x2 + y2, ..., xn + yn)

αx = (αx1, αx2, ..., αxn)

65
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It is easy to check that in this way IRn becomes a real vector space.
Sometimes we shall write 0 for the null vector (0, 0, ..., 0).
The dimension of the vector space IRn is n. The vectors:

e1 = (1, 0, 0, ...0), e2 = (0, 1, 0, ...0), ..., en = (0, 0, ..., 0, 1)

form the canonical basis of IRn. We shall use only elementary prop-
erties of the vector space structure of IRn.

Remark
The elements of IRn have now two names: points or vectors. The name
”points” is generally used in describing ”topological” properties of IRn

(such as distance, open sets, etc); the name ”vectors” is generally used
in describing tangent vectors, etc. We do not bother with such distinc-
tions at this level.

The dot product
If x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) are vectors in IRn then we
define the dot (scalar) product:

x · y = x1y1 + x2y2 + ...+ xnyn

Another notation for the dot product is < x, y >.
It is easy to check the properties:
(i) x · y = y · x.
(ii) x · x ≥ 0, x · x = 0 iff x = 0.
(iii) (x+ y) · z = (x · z) + (y · z).
(iv) (αx) · y = α(x · y), ∀x, y, z ∈ IRn, ∀α ∈ IR.
The vector space IRn together with the above dot product is called the
n-th dimensional Euclidean space.

The Cauchy-Schwarz inequality
For every x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) ∈ IRn we have:

(?) (x · y)2 ≤
(

n∑
k=1

x2
k

) (
n∑
k=1

y2
k

)

Proof If y = 0 then no proof is needed (0=0).
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Suppose that y 6= 0; then
n∑
k=1

(λyk − kk)2 ≥ 0,∀λ ∈ IR. We get:

λ2
n∑
k=1

y2
k − 2λ

n∑
k=1

xkyk +
n∑
k=1

x2
k ≥ 0, ∀λ ∈ IR

By using the well known properties of the quadratic function we obtain
the required inequality.

The Euclidean norm
For x ∈ IRn we define ‖ x ‖=

√
x · x =

√
x2

1 + x2
2 + ...+ x2

n and call it
the (Euclidean) norm of x.
The properties of the norm are (∀x, y ∈ IRn, ∀α ∈ IR):
(i) ‖ x ‖≥ 0, ‖ x ‖= 0 iff x = 0;
(ii) ‖ αx ‖= |α| ‖ x ‖;
(iii) ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖ .
Only property (iii) is not trivial to check (one can use Cauchy-Schwarz
inequality).
Obviously, for n = 1 the euclidean norm is the same as the absolute
value. The vector space IRn together with the norm is a normed vec-
tor space.

The Euclidean distance
For x, y ∈ IRn we define the (Euclidean) distance by

d(x, y) =‖ x− y ‖

It is clear that (∀x, y, z ∈ IRn):
(i) d(x, y) ≥ 0, d(x, y) = 0 iff x = y.;
(ii) d(x, y) = d(y, x);
(iii) d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality).
Rn together with the Euclidean distance is a metric space.

Remark
In the metric spaces R2 and R3 the Euclidean distance coincide with
the distance (studied at school) of analytic geometry.
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Sequences in IRp

During this section we use the letter p for the dimension of the Eu-
clidean space, the letter n being used for sequences.

Definition
The sequence (xn)n in Rp converges to x ∈ IRp if:

∀ε > 0,∃Nε ∈ IN s.t. if n ≥ Nε, then ‖ xn − x ‖< ε.

If so, then x is called the limit of the sequence (xn)n and the sequence
is said to be convergent to x. We write lim

n→∞
xn = x or xn −→ x.

Remark
If xn −→ x and xn −→ y then x = y (if the limit exists, then it is
unique).

It is not difficult to prove the following:
Proposition

(i) If xn −→ x and yn −→ y then xn + yn −→ x+ y.
(ii) If xn −→ x and αn −→ α (in IR) then αxn −→ αx.
We say that the operations of the vector space IRp are continuous.

Let us consider a sequence (xn)n in IRp; we have xn = (xn1, xn2, ..., xnp),
so the notation is a little bit clumsy. Anyway, it is clear that to give a
sequence in IRp is equivalent to give p sequences of real numbers. To
be more specific, let us take the case of IR2; for a sequence (xn, yn)n
there are two sequences (of real numbers) (xn)n and (yn)n (the first
component and the second component, respectively).

Theorem
Let (xn)n be a sequence in IRp and let x ∈ IRp.
Then xn −→ x iff the sequences of the components of (xn)n converge
to the corresponding components of x.
For example, in IR2, (xn, yn) −→ (x, y) iff xn → x and yn → y (in IR).
Proof It’s easy if one uses the inequalities:

|xk| ≤ ‖ x ‖ ≤ |x1|+ |x2 + ...+ |xp|, ∀k = 1, 2, ..., p.
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Remark
We can say that convergence in IRp is componentwise convergence.

Example

In IR2 the sequence
(

1
n
,
(
1 + 1

n

)n)
n

converges to (0, e) simply because

1
n
−→ 0 and

(
1 + 1

n

)n
−→ e (in IR).

Definition
A Cauchy sequence in IRp is a sequence (xn)n s.t:

∀ε > 0,∃Nε ∈ IN s.t. if n,m ≥ Nε, then ‖ xn − xm ‖< ε.

It is easy to observe (by using the previous discussion) that for a se-
quence in IRp to be a Cauchy sequence is (again) a componentwise
property.

Theorem
In IRp a sequence is convergent iff it is a Cauchy sequence (one says
that the metric space IRp is a complete metric space).
Proof The problem can be reduced to sequences in IR (by using the
componentwise philosophy).

Exercise
A sequence (xn)n in IRp is said to be bounded if there exists M > 0
s.t. ‖ xn ‖≤M, ∀n ∈ IN.
Prove that convergent sequences are bounded.

Exercise
Does the Cesaro theorem hold in IRp ?
Hint The answer is affirmative, but be carefull at the choice of the
convergent subsequence of each component.

Closed sets, open sets

Definition
A set F ⊆ IRp is said to be closed (in IRp) if, either F = ∅, or: if
for every sequence (xn)n in F converging to x ∈ IRp, we have x ∈ F .
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Loosely speaking F is closed to taking limits of sequences in F .

Example
(i) IRp is closed (why ?).
(ii) Every interval [a, b] ⊆ IR is closed (in IR).
(iii) Every rectangle [a, b]× [c, d] ⊆ IR2 is closed.
Proof We only prove (iii); if (xn, yn) is a convergent sequence in F s.t.
(xn, yn) −→ (x, y) in IR2, then xn ∈ [a, b], xn −→ x, and yn ∈ [c, d],
yn −→ y. We get that x ∈ [a, b] and y ∈ [c, d], so (x, y) ∈ [a, b]× [c, d].

Definition
A set D ⊆ IRp is said to be open (in IRp) if its complement IRp \D is
closed.

Example
(i) IRp is open; also ∅ is open. So, IRp and ∅ are both open and closed.
(ii) D = (a, b) ⊆ IR is open (in IR).
(iii) D = (a, b)× (c, d) ⊆ IR2 is open (in IR2).

Definition
Let a ∈ IRp and r > 0; the open ball centered at a and radius r is the
set:

B(a, r) = {x ∈ IRp ; ‖ x− a ‖< r}

The closed ball centered at a and radius r is the set:

B′(a, r) = {x ∈ IRp ; ‖ x− a ‖≤ r}

We leave to the reader to see what the open and closed balls are in IR,
IR2 and IR3. For example, in IR2 the open balls are open disks.

In order to understand what open sets mean it is useful to prove
the following:

Proposition
A non empty set D ⊆ IRp is open iff for every a ∈ D there exists r > 0
s.t. B(a, r) ⊆ D.
Proof Suppose D is open and let a ∈ D. If the conclusion of the
proposition would be false, then for every n ∈ IN there is xn ∈ B(a, 1

n
)
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s.t. xn 6∈ D. It is clear that xn ∈ IRp \ D and that xn −→ a. As
IRp \D is closed, it results that a ∈ IRp \D, which is a contradiction.
Analogously one can prove the converse.

Remark
The intuition of open sets given by the above proposition is that a point
of an open set D has ”around” it (in any ”direction”) points of D as
close to it as we want.

Theorem (basic properties of open sets)
(i) IRp and ∅ are open.
(ii) If (Di)i∈J is a family of open sets (not necessarily finite), then

⋃
i∈J

Di

is open.
(iii) Let n ∈ IN; if D1, D2, ..., Dn are open, then D1

⋃
D2

⋃
...
⋃
Dn is

open.

Theorem (basic properties of closed sets)
(i) IRp and ∅ are closed.
(ii) If (Fi)i∈J is a family of closed sets, then

⋂
i∈J

Fi is closed.

(iii) If F1, F2, ..., Fn are closed sets, then F1
⋃
F2
⋃
...
⋃
Fn is closed.

The previous theorems are easy to prove by using the character-
ization of open sets (with open balls); for the closed sets, take the
complements and use De Morgan laws.

Exercise
Prove that open balls are open sets and closed balls are closed sets.

Compact sets

Definition
A set K ⊆ IRp is compact if it is closed and bounded; remember that
a set K is bounded if ∃M > 0 s.t. ‖ x ‖≤ M, ∀x ∈ K. The empty set
is compact by definition.
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Example
(i) Closed balls are compact.
(ii) IRp is not compact.

Theorem
A set K ⊆ IRp is compact iff for every sequence (xn)n in K there is a
convergent subsequence xnk −→ x ∈ K.
So compactness is somehow a Cesaro-type property together with a
closeness condition.
Proof Let us prove only one implication and this one for p = 1. Let
∅ 6= K ⊆ be a compact set and let xn be a sequence in K; then, due to
the boundness of K, the sequence (xn)n will be bounded. By Cesaro
theorem there exists a subsequence xnk −→ x ∈ IR; the set K being
closed, x ∈ K.

Exercises

1. If K1, K2, ..., Kp are compact subsets of IR, then the set
K1 ×K2 × ...×Kp ⊆ IRp is compact.
Hint Use Cesaro theorem in IRp (see the exercise on pg.69).

2. If K1 and K2 are compact sets in IRp then K1
⋃
K2 is compact.

3. Let K ⊆ H ⊆ IRp; if H is compact and K is closed then K is
compact.

4. Let (xn)n be a convergent sequence in IRp and let a be its limit.
Prove that the set {xn ; n ∈ IN}⋃{a} is compact (in IRp).
Hint Prove the statement for p = 1, then apply exercise 1.

5. Check if the following sets are open, closed or compact:
A = {(x, y) ∈ R2 | 0 < x2 + y2 ≤ 1},
B = {(x, y) ∈ R2 | 1 ≤ x2 + y2 ≤ 2},
D = {(x, y) ∈ R2 | x2 + y2 < 1, x > 0, y > 0},
E = {(x, y) ∈ R2 | ax+ by + c = 0, a, b, c ∈ R a2 + b2 + c2 6= 0},
F =

{(
1
n
, 1
)
∈ R2 | n ∈ N

}
, G = F ∪ {(0, 1)}.
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3.2 Continuity

We shall study functions f : IRn 7→ IRm, or, more generally, f : E 7→
IRm, E ⊆ IRn. Such functions are called vector-valued functions
of several variables (more specific, ”vector valued” if m > 1 and
”real-valued” if m = 1).

Of great significance for the differential calculus are the linear
functions. Remember that a function f : IRn 7→ IRm is linear if:

f(x+ y) = f(x) + f(y) and f(αx) = αf(x), ∀x, y ∈ IRn, ∀α ∈ IR

A linear map is completely determined by the values it takes on the
canonical basis of IRn, so by the vectors f(e1), f(e2), ..., f(en); in fact,
if x = (x1, x2, ..., xn) then x = x1e1 + x2e2 + ... + xnen, hence f(x) =
x1f(e1) + x2f(e2) + ...+ xnf(en). It is well known that to every linear
function one can associate a (unique) matrix with respect to the canon-
ical bases. Consequently, computing the values of the function reduces
to multiplication of matrices.

Examples
(i) Every linear map f : IR 7→ IR has the form f(x) = αx for a given
α ∈ IR. We can identify α with the matrix of f (in the canonical bases).
(ii) Every linear map f : IR2 7→ IR has the form f(x, y) = αx + βy for

given α, β ∈ IR; the matrix of f is (α β), so f(x, y) = (a b)

(
x
y

)
.

An important example of linear functions are the canonical pro-
jections of IRn. They are denoted by π1, π2, ..., πn and defined by
πk(x1, x2, ..., xn) = xk, k = 1, 2, ..., n.

By using the canonical projections we can better describe a func-
tion f : IRn 7→ IRm. In fact let fk = πk ◦ f, k = 1, 2, ..., n; then
∀(x1, x2, ..., xn) ∈ IRn:

f(x1, x2, ..., xn) = (f1(x1, x2, ..., xn), f2(x1, x2, ..., xn), ..., fn(x1, x2, ..., xn))

The real valued functions f1, f2, ..., fm are called the components of
f and we write f = (f1, f2, ..., fm).
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If we denote by y = (y1, y2, ..., ym) a generic point IRm, the function f
can be described (in a traditional notation) as:

y1 = f1(x1, x2, ..., xn), y2 = f2(x1, x2, ..., xn), ..., ym = fm(x1, x2, ..., xn)

So vector valued functions have components and are determined by
these ones. Viceversa given m functions f1, f2, ..., fm : IRn 7→ IR there
is a unique function f : IRn 7→ IRm s.t. f = (f1, f2, ..., fm). We shall
see that the study of f can be sometimes reduced to the study of its
components.
Of course the components of a function f : E 7→ IRm are defined in the
same way.

Exercise
A map f : IRn 7→ IRm is linear iff its components are linear.

Definition
Let f : E 7→ IRm, E ⊆ IRn, a ∈ E.
The function f is continuous at a if:

∀ε > 0 ∃δε > 0 s.t. if x ∈ E and ‖ x−a ‖< δε then ‖ f(x)−f(a) ‖< ε.

Here ‖ ‖ is used to denote the euclidian norm both in IRn and IRm.
The function f is continuous if continuous at every point of E.

An equivalent condition for continuity is:

Proposition
f is continuous at a iff for every sequence (xk)k in E, xk −→ a one has
f(xk) −→ f(a).
We admit this result without proof (it is a good exercise to try it).
Generally, the above proposition is easier to apply in concrete situa-
tions to prove continuity.

Example

Let f : IR2 7→ IR be f(x, y) =

{
xy

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
Let us prove that f is continuous at every point (a, b) 6= (0, 0) (here
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”a” is the first component of the point) and not continuous (so discon-
tinuous) at (0, 0).
Let (a, b) 6= (0, 0) be given and take (xk, yk) −→ (a, b). We can suppose
that (xk, yk) 6= (0, 0) for every n (why ?) Then xk −→ a and yk −→ b
so xkyk −→ ab, x2

k + y2
k −→ a2 + b2 and

f(xk, yk) =
xkyk
x2
k + y2

k

−→ ab

a2 + b2

by well-known results about sequences of real numbers. Now, for the
case of the point (0, 0), remark that if x 6= 0, y = tx, t ∈ IR then
f(x, tx) = t

1+t2
(the function f is constant along lines passing through

the origin). So, if xk −→ 0, xk 6= 0 then f(xk, txk) −→ t
1+t2
6= 0 for

t 6= 0, so f is not continuous at (0, 0). In fact the proof shows more:
there is no value at (0, 0) making f continuous at (0, 0).

Exercise
Linear functions are continuous.

Proposition
Let f : E 7→ IRm, E ⊆ IRn, f = (f1, f2, ..., fm) and a ∈ E. Then f is
continuous at a iff f1, f2, ..., fm are all continuous at a. (So continuity
is componentwise).
Proof Trivial using sequences and componentwise convergence.

Remark
In proving continuity we can reduce the case of vector valued functions
to that of real valued functions.

Remember that for f : IRn 7→ IRm and B ⊆ IRm we define

f−1(B) = {x ∈ IRn ; f(x) ∈ B}.

We have the following elegant description of continuity:
Theorem

f : IRn 7→ IRm is continuous iff for every closed set F ⊆ IRm, the set
f−1(F ) is closed.
Proof

First, suppose f is continuous and F is closed (and non empty,
the case F = ∅ being trivial). Let (xk)k be a convergent sequence in
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f−1(F ), xk −→ a (in IRn). Then f(xk) ∈ F, ∀k and, by continuity,
f(xk) −→ f(a). But F being closed f(a) ∈ F so a ∈ f−1(F ) proving
that f−1(F ) is closed.
Conversely, let f−1(F ) be closed (in IRn) for every closed set F ⊆ IRm;
let a ∈ IRn. if f would not be continuous at a then:
∃ε > 0 s.t. ∀δ > 0, ∃xδ ∈ IRn s.t. ‖ xδ−a ‖< δ and ‖ f(xδ)−f(a) ‖≥ ε.
Take now F = {y ∈ IRm ; ‖ y − f(a) ‖≥ ε}; F is closed (why?) and of
course, a 6∈ f−1(F ). But if we take δ = 1

k
, k ≥ 1 we can find a sequence

(xk)k, xk = x 1
k
; then xk ∈ F and xk −→ a. So f−1(F ) would not be

closed, which is a contradiction.

Exercise
f : IRn 7→ IRm is continuous iff for every open set D ⊆ IRm f−1(D) is
open (in IRn).

We shall now consider a basic property of continuous functions with
respect to compact sets.

Theorem
If f : IRn 7→ IRm is continuous and K ⊆ IRn is compact then f(K)
is compact.
Proof Remember first that f(K) = {f(x) ; x ∈ K} ⊆ IRm. Now
let (yk)k be a sequence in f(K); we can obtain a sequence (xk)k s.t.
xk ∈ K and f(xk) = yk. But K being compact there is a convergent
subsequence xkp −→ x ∈ K. From the continuity of f we deduce that
f(xkp) −→ f(x) ∈ K. So (yk)k has a convergent subsequence (to a
point of f(K)) and so f(K) is compact.

In particular for the case m = 1 we have:

Proposition
If f : IRn 7→ IR is continuous and K ⊆ IRn is compact then f is
bounded and attains its minimum and maximum values on K.
Proof By the bounds of f on K we mean

sup
K
f = sup{f(x) ; x ∈ K} = sup f(K)

inf
K
f = inf{f(x) ; x ∈ K} = inf f(K)
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By ”attains its bounds” we mean that sup f and inf f are values of f
(they belong to f(K)). Now, for the proof, we know that f(K) is a
compact set so, closed and bounded. Being bounded, supK and infK are
real numbers. There are sequences of f(K) converging to sup f(K) and
inf f(K) (why?). So f(K) being closed, then sup f(K) and inf f(K)
belong to f(K).

Remark
(i) It is no need for f to be defined on the whole IRn; the same result
holds for f defined just on the compact set K.
(ii) The proposition is very important for the so called ”optimization
problems” (finding the cheapest, the least, etc). It tells us that on
compact sets the optimization problem has solutions. Unfortunately it
gives no method for finding (computing) them.

Exercises

1. Find the minimum and maximum values of the function
f(x, y) = xy

x2+y2
on the unit circle S = {(x, y) ; x2 + y2 = 1}.

Hint One can use polar coordinates x = ρ cosϕ, y = ρ sinϕ; we get
f(ϕ) = 1

2
sin 2ϕ, etc.

2. If K ⊆ IR is not compact then there is a continuous not bounded
function f : K 7→ IR.
Hint If K is not bounded, take f(x) = x; if K is not closed, let
a 6∈ K s.t. there is a sequence (xn)n in K such that xn −→ a and take
f(x) = 1

|x−a| .

Study the continuity of the following functions (exercises 3 - 7):

3. f(x, y) =

{
x2y
x2+y2

, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

Hint lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

x2y
x2+y2

= 0, because | x2y
x2+y2

| ≤ |x|, so

f is continuous at (0, 0).

4. f(x, y) =

{
x2y
x4+y2

, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)
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Hint Use the sequences: (xn, yn) = ( 1
n
, 1
n2 )→ (0, 0) and

(x′n, y
′
n) = ( 1

n
, 1
n
)→ (0, 0); it results f is not continuous at (0, 0).

One can observe that lim
x→0

f(x,mx) = 0,∀m ∈ IR and

lim
ρ→0

f(ρ cosϕ, ρ sinϕ) = 0,∀ϕ ∈ IR.

5. f(x, y) =

{
(x2 + y2) sin 1

xy
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

Hint Using the inequality
∣∣∣(x2 + y2) sin 1

xy

∣∣∣ ≤ x2 + y2 we obtain:

lim
(x,y)→(0,0)

f(x, y) = 0

6. f(x, y) =


ye
− 1
x2

y2+e
− 2
x2
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

Hint Use the sequences: (xn, yn) = ( 1√
lnn
, 1
n
)→ (0, 0) and

(x′n, y
′
n) = ( 1√

lnn
, 1
n2 )→ (0, 0) to see f is not continuous.

7. f(x, y) =

{
1
xy

sin x3y2

x2+y2
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

8. Find a continuous not bounded function on A = [−2, 2] \ {0, 1}.

9. Find an example of a continuous function f on IR and an open
set D ⊆ IR with f(D) not open.
Hint For example f(x) = x2.

10. If f : D ⊆ IRn 7→ IRm, then by definition the graph of f is
{(x, f(x)) ∈ IRn × IRm ; x ∈ D}.
Give a function f : [0, 1] 7→ IR that has a closed graph (in IR2) but is
not continuous.
Hint Take f(x) = lnx for x ∈ (0, 1] and f(0) = 0.



Chapter 4

Differentiable functions

4.1 Partial derivatives and the differential

Partial derivatives

A vector v ∈ IRn is called a direction if ‖ v ‖= 1.

Examples
(i) In IR there are only two directions: 1 and -1.
(ii) In IR2 the directions can be identified with the points of the unit
circle x2 + y2 = 1.
(iii) In IR3 the directions can be identified with the points of the unit
sphere x2 + y2 + z2 = 1.
(iv) In IRn the vectors e1, e2, ...en of the canonical basis are directions
(sometimes called the ”positive” directions of the coordinate axes).

Let now Ω ⊆ IRn be a non empty open set, f : Ω 7→ IR and a ∈ Ω.
Remark that for any direction v and ”enough small” t ∈ IR (|t| < ε),
then a+ tv ∈ Ω, so f(a+ tv) is well-defined.

Defintion
We say that f is differentiable at a in the direction v if the limit:

lim
t→0

f(a+ tv)− f(a)

t

79
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exists and is finite (it’s a real number). If this is the case then we denote

this limit by
df

dv
(a) and call it the derivative of f in the direction

v at a (directional derivative). So:

lim
t→0

f(a+ tv)− f(a)

t
=
df

dv
(a)

Intuitively we can consider the function t 7→ f(a+ tv) as the restriction
of f to the line passing through a and of direction v, giving information
about the variation of f along the mentioned line.

The derivatives of f in the directions e1, e2, ..., en (if they exist) are
called partial derivatives and we shall use the notations

df

dek
(a) =

∂f

∂xk
(a)

(an exception in the case of IR for which the well-known notation
df

dx
(a),

or f ′(a) will be used). So we have:

∂f

∂xk
(a) = lim

t→0

f(a+ tek)− f(a)

t
= lim

t→0

f(a1, ..., ak + t, ak+1, ..., an)

t

We see that
∂f

∂xk
(a) is the derivative of the one single variable

xk 7→ f(a1, a2, ..., xk, ak+1, ..., an) at the point ak. So partial deriva-
tives follow the usual rules of computing derivatives.

If
∂f

∂xk
(a) exists for every a ∈ Ω we say that

∂f

∂xk
exists on Ω; if

∂f

∂x1

,
∂f

∂x2

, ...,
∂f

∂xn
exist on Ω we say that f has (first order) partial

derivatives on Ω.

Example

(i) Let f : IR2 7→ IR be given by f(x, y) =

{
xy

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

Then f(x, 0) = 0 = f(0, y), so
∂f

∂x
(0, 0) = 0 =

∂f

∂y
(0, 0); f has partial
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derivatives at (0, 0) but we know (see the previous section) that f is
not continuous at (0, 0). If we want to compute the partial derivatives
at a point (x, y) 6= (0, 0) we can use the usual rules of differentiation:

for
∂f

∂x
keep y constant and compute the derivative with respect to x,

etc.
∂f

∂x
(x, y) = y

x2 + y2 − 2x2

(x2 + y2)2
=
y(y2 − x2)

(x2 + y2)2
,

∂f

∂y
(x, y) =

x(x2 − y2)

(x2 + y2)2
,

for (x, y) 6= (0, 0). We obtain the partial derivatives of f :

∂f

∂x
(x, y) =

{
y(y2−x2)
(x2+y2)2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

∂f

∂y
(x, y) =

{
x(x2−y2)
(x2+y2)2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

(ii) For the same function, take a direction v = (cos θ, sin θ).
Then f(0 + tv) = cos θ sin θ, t 6= 0; we obtain:

lim
t→0

f(0 + tv)− f(0)

t
= lim

t→0

cos θ sin θ

t
,

so
df

dv
(0, 0) exists only for the directions (1, 0), (0, 1), (−1, 0), (0,−1),

being 0 in these cases.

The differential

We first recall the definition of the derivative in the one variable
case and restate this definition in a suitable way for an extension to
several variables.

Let I ⊆ IR be an open interval, a ∈ I and f : I 7→ IR. We know
that f is differentiable at a if the limit:

lim
x→a

f(x)− f(a)

x− a
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exists and is finite (a real number). In this case the limit is the deriva-

tive

(
df

dt
(a) or f ′(a)

)
of f at a.

Now put x = a+ h:

lim
x→a

f(x)− f(a)

x− a
= lim

h→0

f(a+ h)− f(a)

h
= f ′(a)

Equivalently:

lim
h→0

f(a+ h)− f(a)− f ′(a)h

h
= 0

The linear function IR 3 h 7→ f ′(a)h is called the differential of f
at a. This way we can restate the definition of differentiability of f at
a as follows:

The function f is differentiable at a iff there exists a linear map
λ : IR 7→ IR s.t:

lim
h→0

f(a+ h)− f(a)− λ(h)

h
= 0

The connection between the differential and the derivative is very sim-
ple (and elegant): f ′(a) is (identified to) the matrix of λ in the canonical
basis of IR (which is 1).

In the last form the definition of the differential can be extended to
several variables as follows:

Definition
Let f : Ω 7→ IRm, Ω ⊆ IRn, open and a ∈ Ω. f is said to be differen-
tiable at a if there exists a linear map λ : IRn 7→ IRm s.t.

(?) lim
h→0

‖ f(a+ h)− f(a)− λ(h) ‖
‖ h ‖

= 0

Both norms in IRn and IRm were denoted by ‖ ‖.

Remark
In IRn, h −→ 0 iff ‖ h ‖−→ 0.
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Going on with the definition, call λ the differential of f at a (it
will be proved to be unique if any) and denote it by Df(a); the ma-
trix of Df(a) in the canonical bases is denoted by f ′(a) (it is an m×n
matrix) and it is called the Jacobian matrix of f at a. In the case
m = n the determinant det f ′(a) of f ′(a) is called the Jacobian of f
at a and is denoted by Jf (a). If f is differentiable at every a ∈ Ω we
say that f is differentiable on Ω.

Remark
The notation Df(a) is somehow clumsy as Df(a) is a (linear) function.
So Df(a) : IRn 7→ IRm and Df(a)(x) ∈ IRm, ∀x ∈ IRn.

Proposition
If the linear functions λ and µ satisfy (?) for f at a then λ = µ. So,
the differential at a (if exists) is unique.
Proof Let ∆f(h) = f(a+ h)− f(a); then:

‖ λ(h)− µ(h) ‖
‖ h ‖

≤ ‖ λ(h) + ∆f(h)−∆f(h)− µ(h) ‖
‖ h ‖

≤

≤ ‖ ∆f(h)− λ(h) ‖
‖ h ‖

+
∆f(h)− µ(h) ‖

‖ h ‖

So lim
h→0

‖ λ(h)− µ(h) ‖
‖ h ‖

= 0. Now take x ∈ IRn, x 6= 0 and a sequence

tn −→ 0, tn 6= 0 in IR; of course tnx −→ 0 in IRn so

lim
n→∞

‖ λ(tnx)− µ(tnx) ‖
‖ tnx ‖

= lim
n→∞

|tn| ‖ λ(x)− µ(x) ‖
|tn| ‖ x ‖

=

= lim
n→∞

‖ λ(x)− µ(x) ‖
‖ x ‖

= 0

(the linearity of λ and µ was used). We obtain that ‖ λ(x)−µ(x) ‖= 0,
so λ(x) = µ(x),∀x ∈ IRn, x 6= 0; but λ(0) = µ(0) = 0, so λ = µ.
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By using (?) and the fact that linear functions are continuous we
easily obtain:

Proposition
If f is differentiable at a, then it is continuous at a.

Remark
We could think about (?) as a possibility of approximating f , around
a, by the much more simpler function of type f(a)+λ (affine function).
The sense of the approximation is exactly (?): the difference between
f and f(a) + λ tends to zero faster than h.

Examples
(i) Let f : IRn 7→ IRm be a constant function, f(x) = c, ∀x ∈ IRn.

Then f is differentiable on IRn and Df(a) = 0, ∀a ∈ IRn; here 0 is the
null (linear) function.
In fact it is enough to check (?): f(a+ h)− f(a)− 0(h) = 0,∀h ∈ IRn,
so (?) is true.

(ii) Let f : IRn 7→ IRm be linear. Then f is differentiable on IRn

and Df(a) = f, ∀a ∈ IRn.
In fact f(a+ h)− f(a)− f(h) = 0,∀h ∈ IRn, etc.

(iii) Take s : IR2 7→ IR, s(x, y) = x+ y. Then

Ds(a, b) = s, ∀(a, b) ∈ IR2.

In fact s is linear.
(iv) Consider p : IR2 7→ IR, p(x, y) = xy. Then:

Dp(a, b)(x, y) = bx+ ay, ∀(a, b) ∈ IR2.

( the Jacobian matrix of p at (a, b) is (b a)):

p(a+ h, b+ k)− p(a, b)− bh− ak = (a+ h)(b+ k)− ab− bh− ak = hk,

so replacing in (?) we get:

lim
(h,k)→(0,0)

|hk|√
h2 + k2

= 0,

because of the inequality: |hk| ≤ h2 + k2.
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Basic properties of the differential

We shall admit, without proof the following:
Theorem (chain rule)

Suppose IRn f7→ IRm g7→ IRp s.t.:
f is differentiable at a ∈ IRn and g is differentiable at f(a).
Then g ◦ f is differentiable at a and

D(g ◦ f)(a) = Dg(f(a)) ◦Df(a)

In the language of Jacobian matrices: (g ◦ f)′(a) = g′(f(a)) · f ′(a).

The theorem says that the composition of differentiable functions
is differentiable and that the differential of the composition is the com-
position of the differentials. The result seems quite natural and elegant
(for a proof see [4]). The relation between the Jacobian matrices gen-
eralizes the well-known result for m = n = p = 1.

We shall apply the chain rule to prove:
Proposition

Let f : IRn 7→ IRm, f = (f1, f2, ..., fm) and a ∈ IRn. Then f is dif-
ferentiable at a iff f1, f2, ..., fm are differentiable at a. In this case
Df(a) = (Df1(a), Df2(a), ..., Dfm(a)) (the components of the differ-
ential are the differentials of the components). In terms of Jacobian
matrices: the lines of f ′(a) are (with obvious identifications) the Jaco-
bian matrices of the components.
Proof The proposition is highly plausible due to the fact the limits are
componentwise. We restrict ourselves to prove one half of the result;
so, we suppose f to be differentiable at a. If πk are the canonical pro-
jections, then fk = πk ◦ f, ∀k = 1, 2, ...,m. The canonical projections
are linear and so differentiable at every point, so using the chain rule
we obtain that the components fk are differentiable, ∀k = 1, 2, ...,m.
Moreover, Dfk(a) = Dπk(f(a)) ◦Df(a); but (see a previous example)
Dπk(f(a)) = πk, so Dfk = πk ◦ Df(a), which means that the compo-
nents of the differential are the differentials of the components. The
translation to Jacobian matrices is trivial.
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A connection between the differential and the partial derivatives is
given in the following:

Theorem
Let f : IRn 7→ IRm, f = (f1, f2, ..., fm be differentiable at a ∈ IRn. Then

the partial derivatives
∂fi
∂xj

(a) exist ∀i = 1, 2, ...,m, j = 1, 2, ..., n and

the Jacobian matrix of f at a is:

f ′(a) =

(
∂fi
∂xj

)
1≤i≤m , 1≤j≤n

Proof Due to the previous proposition it will be enough to take the
case m = 1; denote λ = Df(a). If (general form of linear maps)
λ(x1, x2, ..., xn) = α1x1 + α2x2 + ...+ αnxn for fixed α1, α2, ..., αn, then
we have to prove that αj = ∂f

∂xj
(a), ∀j = 1, 2, ..., n. From the very

definition of the differentiability we have (for a given j):

lim
hj→0

|f(a1, a2, ..., aj + hj, aj+1, ..., an)|
|hj|

= 0,

where h = (0, 0, ..., hj, 0, ...0). But this exactly means αj = ∂f
∂xj

(a), etc.

Remark
The theorem is to be applied as follows: if you are asked about the
differentiability of a function at a point then first you check the exis-
tence of the partial derivatives of all components with respect to all
variables. If at least one of these derivatives does not exist then f is
not differentiable. If all of them exist then we do not know yet if f is
differentiable but we have a candidate for the differential, namely the
linear map having the matrix of partial derivatives and we can apply
the definition to see what is the case.

Example

Let f : IR2 7→ IR,f(x, y) =

{
(x2 + y2) sin 1

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
We want to prove that f is differentiable at (0, 0).
First we compute the partial derivatives at the origin:

∂f

∂x
(0, 0) = lim

x→0

f(x, y)− f(0, 0)

x
= lim

x→0

x2 sin 1
x2

x
= 0,
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and by symmetry
∂f

∂y
(0, 0) = 0. So the candidate for the differential at

(0, 0) is the constant null function. We have:

lim
(x,y)→(0,0)

f(x, y)− f(0, 0)− 0√
x2 + y2

=

= lim
(x,y)→(0,0)

√
x2 + y2 sin

1

x2 + y2
= 0,

so f is differentiable at (0, 0) and Df(0, 0) = 0.

Proposition
Let f : Ω 7→ IR, Ω a non empty open subset in IRn and a ∈ Ω. If f
is differentiable at a then for every direction v = (v1, v2, ..., vn), f is
differentiable in the direction v at a and:

df

dv
(a) = v1

∂f

∂x1

(a) + v2
∂f

∂x2

(a) + ...+ vn
∂f

∂xn
(a)

Proof Let g(t) = f(a+ tv) be defined in a neighborhood of t = 0. As
f is differentiable at a, it results that g is differentiable at 0. By the
very definition, it results that f is differentiable in the direction v at a
and (using the chain rule):

∂f

∂v
(a) = g′(0) = v1

∂f

∂x1

(a) + v2
∂f

∂x2

(a) + ...+ vn
∂f

∂xn
(a)

The vector (
∂f

∂x1

(a),
∂f

∂x2

(a), ...,
∂f

∂xn
(a)

)

is called the gradient of f at a and is usually denoted by gradaf .
So the above formula can be written by using the dot product as

df

dv
= (gradaf) · v
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Remark
For a differentiable function f : IRn 7→ IR at ∈ IRn we can write:

Df(a)(x) =

(
∂f

∂x1

(a), ...,
∂f

∂xn
(a)

)

x1

.

.

.
xn

 =

=
∂f

∂x1

(a)x1 +
∂f

∂x2

(a)x2 + ...+
∂f

∂xn
(a)xn.

It is a tradition (in differential calculus) to use the notation dxk for the
canonical projection πk, so we can rewrite:

Df(a)(x) =
∂f

∂x1

(a)dx1(x) +
∂f

∂x2

(a)dx2(x) + ...+
∂f

∂xn
(a)dxn(x),

or simply:

Df(a) =
n∑
k=1

∂f

∂xk
(a)dxk

Generally, the existence of partial derivatives at a point is not enough
to assure differentiability (it does not assure even continuity !) But we
have in this respect:

Theorem
Let f : IRn 7→ IRm, f = (f1, f2, ..., fm), a ∈ IRn be such that the partial

derivatives
∂fi
∂xj

exist in a neighborhood (open ball centered at a) of

a, ∀i = 1, 2, ..., n, ∀j = 1, 2, ...,m and suppose they are continuous at
a. Then f is differentiable at a.
Proof Again we can consider only the case m = 1. The candidate for

the differential is the linear function of matrix

(
∂f

∂x1

(a), ...,
∂f

∂xn
(a)

)
.

The idea is to use the trick:

f(a1 + h1, a2 + h2, ..., an + hn)− f(a1, a2, ..., an) =

= f(a1 + h1, a2, ..., an)− f(a1, a2, ..., an)+
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+f(a1 + h1, a2 + h2, a3, ..., an)− f(a1 + h1, a2, ..., an)+

.......................................................

+f(a1 + h1, a2 + h2, ..., an + hn)− f(a1 + h1, ..., an−1 + hn−1, an) =

=
∂f

∂x1

(ξ1, a2, ..., an)h1+
∂f

∂x2

(a1+h1, ξ2, ..., an)h2+...+
∂f

∂xn
(a1+h1, ..., ξn)hn,

by Lagrange mean theorem (with appropriate ξ1, ξ2, ..., ξn). By using
the last relation in the definition of the differentiability, we get:∣∣∣ ∂f
∂x1

(ξ1, a2, ..., an)h1 + ...+ ∂f
∂xn

(a1 + h1, ..., ξn)hn − ∂f
∂x1

(a)h1 − ...− ∂f
∂xn

(a)hn
∣∣∣√

h2
1 + h2

2 + ...+ h2
n

≤

≤
∣∣∣∣∣ ∂f∂x1

(ξ1, a2, ..., an)− ∂f

∂x1

(a)

∣∣∣∣∣+ ...+

∣∣∣∣∣ ∂f∂xn (a1 + h1, ..., ξn)− ∂f

∂xn
(a)

∣∣∣∣∣ ,
we used |hi|

‖h‖ ≤ 1; but the last sum of absolute values tends to zero as
h −→ 0 due to the continuity at a of the partial derivatives.

Computing partial derivatives of composite functions

Using the chain rule and the form of the Jacobian matrix described
above we obtain the basic rule for computing partial derivatives of com-
posite functions.

Proposition
Suppose f : IRn 7→ IRm, f = (f1, f2, ..., fm), g : IRm 7→ IR be s.t. f
is differentiable at a ∈ IRn and g is differentiable at f(a). Let the
variables be x = (x1, x2, ..., xn) ∈ IRn and y = (y1, y2, ..., ym) ∈ IRm.
Then if F = g ◦ f one has:

(?)
∂F

∂xi
(a) =

∂g

∂y1

(f(a))
∂f1

∂xi
(a)+

∂g

∂y2

(f(a))
∂f2

∂xi
(a)+...+

∂g

∂ym
(f(a))

∂fm
∂xi

(a)

Proof F will be differentiable at a by the chain rule.
Moreover F ′(a) = g′(f(a)) · f ′(a). So we get:(

∂F

∂x1

(a), ...,
∂F

∂xi
(a), ...,

∂F

∂xn
(a)

)
=
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=

(
∂g

∂y1

(f(a)), ...,
∂g

∂ym
(f(a))

) 
∂f1
∂x1

(a) ..... ∂f1
∂xn

(a)

..... ..... .....
∂fm
x1

(a) ..... ∂fm
∂xn

(a)


We trivially obtain (?) from the matrices multiplication rule.

Example
Let F (x, y) = g(xy, x+y), where g : IR2 7→ IR is a differentiable function
(all over IR2). Denote the variables of g by (u, v); then

∂F

∂x
=
∂g

∂u
y +

∂g

∂v
,
∂F

∂y
=
∂g

∂u
x+

∂g

∂v
,

where we omitted to specify the (corresponding) points.

The inverse function theorem
Let Ω ⊆ IRn be a non empty open set and f : Ω 7→ IR be a function.
We say that f is of class C1 on Ω and we write f ∈ C1(Ω) if all the (first
order) partial derivatives of f exist on Ω and are continuous. More
generally, a function f : Ω 7→ IRm is of class C1 if all its components are
of class C1. Using this language we can rephrase a previous theorem by
saying that C1 functions are differentiable at all points of the domain
of definition.

If a ∈ IRn we define a neighborhood of a as being an open set U
s.t. there is an open ball B(a, r) ⊆ U .

The following theorem is the central result of the differential calcu-
lus showing the ”power” of defining the differential as a linear function.

Theorem ( of the inverse function)
Suppose f : IRn 7→ IRn, a ∈ IRn, s.t. f is C1 in a neighborhood of a
and suppose Df(a) is an isomorphism (a linear bijection). Then there
are neighborhoods U of a and V of f(a) s.t.the restriction of f to U is
bijection on V and the inverse function of this bijection is of class C1.
So if Df(a) has an inverse so does f locally around a. This result is
strong enough because it is quite easy to check the bijectivity of Df(a)
(it is enough to see that the determinant of f ′(a) is not zero) but, gen-
erally, it is very difficult to check the local invertibility of a function.
We do not prove this theorem (see for ex [5], [8]).
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Exercises

1. Compute, by using the definition the partial derivatives of
f : R2 7→ R, f(x, y) = 2x3y − ex2

at (−1, 1).
Hint We have:

∂f

∂x
(−1, 1) = lim

x→−1

f(x, 1)− f(−1, 1)

x+ 1
= lim

x→−1

2x3 − ex2
+ 2 + e

x+ 1
= 6+2e.

∂f

∂y
(−1, 1) = lim

y→1

f(−1, y)− f(−1, 1)

y − 1
= −2.

2. Study the existence of the partial derivatives at the origin of the
functions: f(x, y) =

√
x2 + y2 and g(x, y) = x

√
x2 + y2.

Hint f has not partial derivatives at the origin, while g does.

3. Compute the derivative in the direction v =
(

1
2
, 1

3
, 1

3

)
of the

function f(x, y, z) = x2 − yz at (1, 1, 2).
Hint By the definition we have:

df

dv
(1, 1, 2) = lim

t→0

f
(
(1, 1, 2) + t(1

3
, 2

3
, 2

3
)
)
− f(1, 1, 2)

t
=

= lim
t→0

−1− 4
3
t− 1

3
t2 − (−1)

t
= −4

3
.

We can compute also by using the gradient:

df

dv
(1, 1, 2) =

(
grad(1,1,2)f

)
· v = (2,−2,−1) ·

(
1

3
,
2

3
,
2

3

)
= −4

3
.

4. Let f(x, y) =

{
(x2 + y2) sin 1

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

Is f of class C1 on IR2 ?

5. Is the following function differentiable at the origin?

f(x, y) =


xy2√
x2+y4

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
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6. Let f(x, y) =

{
xy2

x2+y4
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
(i) Compute the partial derivatives.
(ii) Study the continuity.

7. Study the continuity and compute the partial derivatives (where

they exist) for the function: g(x, y) =

 e
−
(
x2

y2
+ y2

x2

)
if xy 6= 0

0 if xy = 0

8. Let f(x, y) =

{
xy x

2−y2
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
(i) Compute the partial derivatives.
(ii) Is f of class C1?
(iii) Study the differentiability.

9. Same questions for f(x, y) =

{
xy2

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

10. A function f : IRn 7→ IR is called homogenous of order α
(α ∈ IR) iff ∀x ∈ IRn, ∀t ∈ IR, t > 0, we have f(tx) = tαf(x).
Prove that if f is homogenous of order α then the following Euler’s
formula holds:

α f(x1, x2, ..., xn) = x1
∂f

∂x1

+ x2
∂f

∂x2

+ ...+ xn
∂f

∂xn

Hint Let u1 = tx1, u2 = tx2, ..., un = txn.
By differentiating the relation f(u1, u2, ..., un) = tα f(x1, x2, ..., xn) with
respect to t we get:

∂f

∂x1

(u1, ..., un)
∂u1

∂x1

+ ...+
∂f

∂xn
(u1, ..., un)

∂un
∂xn

= α tα−1 f(x1, ..., xn)

Or, equivalently (∂u1

∂t
= x1, etc):

x1
∂f

∂x1

(u1, ..., un) + ...+ xn
∂f

∂xn
(u1, ..., un) = α tα−1 f(x1, ..., xn)
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In the last relation put t = 1 and get the result.

11. Let f : IR2 7→ IR be differentiable at (a, b) ∈ IR2. Find the
directions v ∈ IR2 s. t.

df

dv
(a, b) = inf

{
df

du
(a, b) ; u direction in IR2

}

Same question for sup. Generalize to IRn.
Hint Use Cauchy-Schwarz inequality ,etc.

4.2 Local extrema

Higher order partial derivatives

Let f : Ω 7→ IR be a function defined on a nonempty open set

Ω ⊆ IR2. Suppose
∂f

∂x
and

∂f

∂y
to exist on Ω. Then obviously

∂f

∂x

and
∂f

∂y
define functions from Ω to IR so we can ask if they (at their

turn) have partial derivatives, etc. Define the partial derivatives of
second order by

∂

∂x

(
∂f

∂x

)
=
∂2f

∂x2
,
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x

∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y
,
∂

∂y

(
∂f

∂y

)
=
∂2f

∂y2

(read ”d two over d x square”, etc).
If these derivatives exist, we can go on by defining higher order deriva-
tives, etc. Of course we can extend this discussion to functions of more
than two variables in an obvious manner.
Sometimes it is easier to use the following notations:

∂f

∂x
= f ′x,

∂f

∂y
= f ′y
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∂2f

∂x2
= f ′′x2 ,

∂2f

∂y∂x
= f ′′x y,

∂2f

∂x∂y
= f ′′y x,

∂2f

∂y2
= f ′′y2

f ′′x y and f ′′y x are called mixed partial derivatives and they are not
necessary equal (the order of taking derivatives could matter). The
following theorem gives conditions for the equality of the mixed partial
derivatives.

Theorem
Let f ′′x y and f ′′y x exist in a neighborhood of the point (a, b) ∈ Ω and
suppose they are continuous at (a, b). Then f ′′x y = f ′′y x.
Proof We fix an open disk centered at (a, b) where the mixed partial
derivatives exist and let (x, y) be a point in this disk s.t. x 6= a, y 6= b.
Consider:

R(x, y) =
f(x, y)− f(x, b)− f(a, y) + f(a, b)

(x− a)(y − b)

Now define ϕ(t) = f(t,y)−f(t,b)
y−b and apply to ϕ the Lagrange mean value

theorem on [a, x] or [x, a] as a < x or x < a). There exist ξ between a
and x s.t:

ϕ(x)− ϕ(a)

x− a
= ϕ′(ξ)

But ϕ(x)−ϕ(a)
x−a = R(x, y) and ϕ′(ξ) = f ′x(ξ,y)−f ′x(ξ,b)

y−b , so

R(x, y) =
f ′x(ξ, y)− f ′x(ξ, b)

y − b
Apply again the Lagrange theorem mean value theorem to the function
ψ(u) = f ′x(ξ, u) and find η between b and y s.t:

R(x, y) = ψ′(η) = f ′′xy(ξ, η)

Changing the role of x and y and using the same method we can find
ξ′ between a and x and η′ between b and y s.t:

R(x, y) = f ′′yx(ξ
′, η′),

so f ′′xy(ξ, η) = f ′′yx(ξ
′, η′).

Now take a sequence (xn, yn) −→ (a, b), xn 6= a, yn 6= b,∀n ∈ IN.
We obtain that

f ′′xy(ξn, ηn) = f ′′yx(ξ
′
n, η

′
n)
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for convenient ξn, ξ
′
n, ηn, η

′
n as before.

It is clear that (ξn, ηn) −→ (a, b), (ξ′n, η
′
n) −→ (a, b) and by using the

continuity of f ′′xy and f ′′yx at (a, b) we obtain f ′′xy(a, b) = f ′′yx(a, b).

This theorem can be extended to more than two variables and to
higher order partial derivatives without any difficulty. We shall use the
following terminology:

If f : Ω 7→ IR, Ω an open non empty set of IRn we say that f is
of class C2 on Ω if all partial derivatives of second order of f exist on
Ω and they are continuous. One can define functions of class Ck; the
class C∞ will be the intersection of all Ck, ∀k ∈ IN. It follows that the
order of taking the derivatives (up to order k, for a function in class
Ck, k ≥ 2) is immaterial.
The general symbolism for partial derivatives in the case of indepen-
dence of the order is the following: take (α1, α2, ..., αn) a n-tuple of

natural numbers and consider
∂α1+α2+...+αnf

∂xα1
1 ∂x

α2
2 ... ∂x

αn
n

meaning that we take

partial derivatives of f α1-times with respect to x1, α2-times with re-
spect to x2 and so on ( if they exist).

Exercise
Let u : IR2 7→ IR be a function of class C2 on IR2 and let
f(x, y) = u(xy, x+ y). Compute ∂2f

∂x∂y
.

Solution Let denote by (u, v) the variables of g; we first compute (we
omit the point):

∂f

∂y
= x

∂g

∂u
+
∂g

∂v

Now (we use that g is of class C2):

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
=

∂

∂x

(
x
∂g

∂u
+
∂g

∂v

)
=

=
∂g

∂u
+y

∂2g

∂u2
+

∂2g

∂v∂u
+y

∂2g

∂u∂v
+
∂2g

∂v2
=
∂g

∂u
+y

∂2g

∂u2
+(1+y)

∂2g

∂u∂v
+
∂2g

∂v2
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Taylor formulas

Let us now prove a Taylor formula for functions of several variables
which will be useful in the discussions of local extrema. We shall limit
ourselves to C2 functions.

Definition
If a, b ∈ IRn define the (line) segment [a, b] = {a+ t(b− a) ; t ∈ [0, 1]}.
One can observe that the segment [a, b] is the range (image) of the map
ϕ : [0, 1] 7→ IRn, ϕ(t) = a+ t(b− a).

Theorem (Taylor - Lagrange formula)
Let f : Ω 7→ IR, Ω a non empty set of IRn, a ∈ Ω and suppose f of class
C2 on Ω. Then, for every x ∈ Ω with [a, x] ⊆ Ω, there exists ξ ∈ (0, 1)
s.t:

(?) f(x) = f(a) +
n∑
i=1

∂f

∂xi
(a)(xi − ai)+

+
1

2

n∑
i,j=1

∂2f

∂xi∂xj
(a+ ξ(x− a)) (xi − ai) (xj − aj)

Proof Let x be as above and let ψ : [0, 1] 7→ IR, ψ(t) = f(a+t(x−a)).
We can apply to ψ the Taylor Lagrange formula, so there is ξ ∈ (0, 1)
s.t:

ψ(1) = ψ(0) +
ψ′(0)

1!
+
ψ′′(ξ)

2!

We have ψ(0) = f(a), ψ(1) = f(x) and (a = (a1, a2, ..., an)):

ψ′(t) =
∂f

∂x1

(a+ t(x− a))(x1 − a1) + ...+
∂f

∂xn
(a+ t(x− a))(xn − an),

so:

ψ′(0) =
∂f

∂x1

(a)(x1 − a1) + ...+
∂f

∂xn
(a)(xn − an) = Df(a)(x− a)

The second derivative of ψ:

ψ′′(t) =
n∑

i,j=1

∂2f

∂xi∂xj
(a+ t(x− a))(xi − ai)(xj − aj),
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so

ψ′′(ξ) =
n∑

i,j=1

∂2f

∂xi∂xj
(a+ ξ(x− a))(xi − ai)(xj − aj)

and we obtain (?).

Theorem (Taylor- Young formula)

We can transform the previous formula into a Taylor-Young formula
as follows.
Put a+ ξ(x− a) = η and let ωij be s.t:

∂2f

∂xi∂xj
(η) =

∂2f

∂xi∂xj
(a) + ωij(x)

In fact ωij is a notation; we have (f is of class C2): lim
x→a

ωij(x) = 0. So:

∂2f

∂xi∂xj
(η)(xi − ai)(xj − aj) =

=
∂2f

∂xi∂xj
(a)(xi − ai)(xj − aj) + ωij(x)(xi − ai)(xj − aj)

Summing this up we obtain:

n∑
ij=1

∂2f

∂xi∂xj
(η)(xi − ai)(xj − aj) =

=
n∑

ij=1

∂2f

∂xi∂xj
(a)(xi − ai)(xj − aj) +

n∑
ij=1

ωij(x)(xi − ai)(xj − aj)

Denote by:

ω(x) =

∑n
ij=1 ωij(x)(xi − ai)(xj − aj)

‖ x− a ‖2
, x 6= a

We have that:

ω(x) ≤
∑n
ij=1 |ωij(x)| |(xi − ai)| |(xj − aj)|

‖ x− a ‖2
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and as
|xi − ai|
‖ x− a ‖

≤ 1, we get

|ω(x)| ≤
n∑

ij=1

|ωij(x)|

so ω(x) −→ 0 as x −→ a.
We obtain the Taylor-Young formula:

(??) f(x) = f(a) +
n∑
i=1

∂f

∂xi
(a)(xi − ai)+

+
1

2

n∑
i,j=1

∂2f

∂xi∂xj
(a) (xi − ai) (xj − aj) +

1

2
ω(x) ‖ x− a ‖2,

x 6= a, ω(x) −→ 0 as x −→ a. If we put ω(0) = 0, then ω is continuous
and zero at a and (??) holds for every x with [a, x] ⊆ Ω.
Using the Landau notation we get:f(x)−

f(a) +
n∑
i=1

∂f

∂xi
(a)(xi − ai) +

1

2

n∑
i,j=1

∂2f

∂xi∂xj
(a) (xi − ai) (xj − aj)

 =

= o
(
‖ x− a ‖2

)
Local extrema

In this section we study the local extrema of functions defined on
open sets. Let Ω ⊆ IRn be a non empty set open set and f : Ω 7→ IR.

Definition
A point a ∈ Ω is said to be:
(i) a local minimum point for f if there is an open ball B(a, r) ⊆ Ω
s.t. f(x) ≥ f(a), ∀x ∈ B(a, r).
(ii) a local maximum point for f if there is an open ball B(a, r) ⊆ Ω
s.t. f(x) ≤ f(a), ∀x ∈ B(a, r).
A local minimum (maximum) point for f is said to be a local ex-
tremum point for f . We say also that f has a local minimum (max-
imum, extremum) at a.
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Remark
A point a is a local minimum (local maximum) point for f iff in a
neighborhood of a one has f(x) − f(a) ≥ 0 (f(x) − f(a) ≤ 0). So
being a local extremum point is a matter of ”sign” of f(x)− f(a) in a
neighborhood of a.

Example
(i) f : IR2 7→ IR, f(x, y) = x2 + y2; it is clear that (0, 0) is a local
minimum of f . The graph of f is the set {(x, y, f(x, y)) ; (x, y) ∈
IR2} ⊆ IR3. Draw the graph of the function f .
(ii) g : IR2 7→ IR, g(x, y) = xy; then (0, 0) is not a local extremum for
f . In fact in every neighborhood of (0, 0) there are points (x, y) with
g(x, y) > 0 and points with g(x, y) < 0. Use a computer to draw the
graph of g.

We now remind the Fermat theorem for functions in one variable,
which was already stated in the last section of the second chapter.

Theorem (Fermat)
If Ω ⊆ IR is an open set, f : Ω 7→ IR and a ∈ Ω s.t. f is differen-
tiable at a and has a local extremum at a then f ′(a) = 0.

Remark
All the underlined above conditions are essential (necessary) in the Fer-
mat theorem. For example f(x) = |x| has a local minimum at 0 but it
is not differentiable at 0, etc.

The Fermat theorem generalizes to several variables as follows:
Theorem (Fermat)

If Ω ⊆ IRn is an open set, f : Ω 7→ IR and a ∈ Ω are s.t. f is
differentiable at a and has a local extremum at a then:

∂f

∂xi
(a) = 0 ∀i = 1, 2, ..., n.

Proof We know that ∂f
∂xi

is the derivative of the function (of one vari-
able) t 7→ f(a1, a2, ..., ai−1, t, ai+1, ..., an); it’s clear that this function
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has a local extremum at ai so the Fermat theorem for one variable
functions can be applied.

Remark
The condition Df(a) = 0 is only necessary for local extrema of differ-
entiable functions (see example (ii) above, or think to the one variable
case). In other words, for differentiable functions on open sets the local
extreme points satisfy the condition ∂f

∂xi
= 0,∀i = 1, 2, ..., n, but, gen-

erally, a point satisfying this condition could be not a local extremum
point.

Let us introduce the terminology: for a differentiable function
f : Ω 7→ IR the solutions of the system:

(?)
∂f

∂x1

(x) = 0,
∂f

∂x2

(x) = 0, ...,
∂f

∂xn
(x) = 0

are called critical points of f .
So the Fermat theorem states that (under appropriate conditions) lo-
cal extrema are critical points (but not viceversa, generally). In the
remaining of this section we shall find sufficient conditions for local ex-
trema points.

Definition
A function ϕ : IRn 7→ IR is called a quadratic form if ϕ is of the form:

ϕ(x) =
n∑

i,j=1

aij xi xj, aij ∈ IR, aij = aj i, ∀i, j = 1, 2, ..., n

The matrix (aij)ij is the matrix of the quadratic form.

Examples
(i) ϕ(x) =‖ x ‖2= x2

1 + x2
2 + ... + x2

n is a quadratic form; its matrix is
the identity matrix In.
(ii) ψ(x) = −x2

1 − x2
2 is a quadratic form.

(iii) A basic example of a quadratic form is the following. If f is of
class C2 on Ω and a ∈ Ω then

D2f(a)(x) =
n∑

i,j=1

∂2f

∂xixj
(a)xi xj
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is a quadratic form (the left hand is a notation) The matrix of D2f(a)
is called the hessian of f at a. As expected, D2f(a) will play an es-
sential role in the study of local extrema points of f .

Definition

The quadratic form ϕ(x) =
n∑

i,j=1

aij xi xj is positive (negative) defi-

nite if ϕ(x) > 0, ∀x 6= 0 ( ϕ(x) < 0, ∀x 6= 0).

Proposition
Suppose ϕ be a positive definite quadratic form. Then there exists
µ > 0 s.t. ϕ(x) ≥ µ ‖ x ‖2, ∀x ∈ IRn.
Proof For x = 0 the inequality is trivial. Let S = {x ∈ IRn ; ‖ x ‖= 1};
S is a compact set. As ϕ is clearly continuous then ϕ is bounded and
reaches its bounds on S.
Let µ = infS ϕ; then µ > 0 (being a value of ϕ and only ϕ(0) = 0, but

0 6∈ S). So ϕ(y) ≥ µ, ∀y ∈ S. If x 6= 0, then x
‖x‖ ∈ S, so ϕ

(
x
‖x‖

)
≥ µ,

but ϕ
(

x
‖x‖

)
= 1
‖x‖2 ϕ(x) and we obtain ϕ(x) ≥ µ ‖ x ‖2 as desired.

We now can state our basic result on sufficient conditions for ex-
trema points.

Theorem
Let f : Ω 7→ IR be of class C2 on the open set Ω ⊆ IRn and a ∈ Ω be a
critical point of f . Suppose that D2f(a) is positive (negative) definite.
Then a is a local minimum (maximum) for f .
Proof It is enough to consider the positive definite case.
The Taylor-Young formula gives

f(x) = f(a) +
1

2
D2f(a)(x− a) +

1

2
ω(x) ‖ x− a ‖2, lim

x→a
ω(x) = 0

But D2f(a)(x) ≥ µ ‖ x ‖2 for a convenient µ > 0 so

f(x)− f(a) ≥ 1

2
(µ+ ω(x)) ‖ x− a ‖2

As lim
x→a

ω(x) = 0 and µ > 0, the function µ + ω(x) ≥ 0 in a neighbor-

hood of a. This proves the result.
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Remark
It can be proved that if a is a critical point and D2f(a) takes both
strictly positive and strictly negative values then a is not a local ex-
tremum point.

The problem now is to find methods for checking the positive (neg-
ative) definiteness of quadratic forms.

Proposition
The quadratic form ϕ is positive (negative) definite iff all the eigenval-
ues of the hessian matrix are strictly positive (negative).

We do not prove this result but deduce an elementary test for the
case of functions of two variables. For doing this let us use some tradi-
tional notations:

r =
∂2f

∂x2
, s =

∂2f

∂x∂y
, t =

∂2f

∂y2

(other notations, not to be used now: p = ∂f
∂x
, q = ∂f

∂y
). Using these

notations we obtain:

D2f(a)(x, y) = r(a, b)x2 + 2s(a, b)x y + t(a, b) y2

The study of the sign of D2f(a)(x, y) is closely related to the elementary
study of quadratic functions. We get (the discriminant, etc):

D2f(a, b) is definite (positive or negative) iff r(a, b) t(a, b)−s2(a, b) > 0

If this condition holds, then:
D2f(a, b) is positive (negative) definite iff r(a, b) > 0 (< 0).

Resuming all the discussions we have the following ”algorithm” for
searching local extrema of C2 - functions of two variables on open sets:
1. Find the critical points of f .
2. Apply to every critical point the above test ”rt− s2:
(i) if rt− s2 > 0 then we have a local extremum point;
(ii) if rt− s2 < 0 then we do not have a local extremum point (see the
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above remark);
(iii) if rt− s2 = 0 some other considerations are needed (and we do not
enter into details).

Example
Take f : IR2 7→ IR, f(x, y) = xy(a−x−y), a > 0. Let us find the local
extrema of f .
Solution Of course, f is of class C2 on IR2.
1. To find the critical points we solve the system ∂f

∂x
= 0, ∂f

∂y
= 0. But:

∂f

∂x
= y(a− 2x− y),

∂f

∂y
= x(a− x− 2y),

so the system becomes:

{
y(a− 2x− y) = 0
x(a− x− 2y) = 0

.

The solutions are (0, 0), (0, a), (a, 0),
(
a
3
, a

3

)
. We shall test (if it is

extremum or not) only the point
(
a
3
, a

3

)
.

2. Compute:

r =
∂2f

∂x2
= −2y, s =

∂2f

∂x∂y
= a− 2x− 2y, t =

∂2f

∂y2
= −2x

Now compute:

r
(
a

3
,
a

3

)
= −2a

3
, s

(
a

3
,
a

3

)
= −a

3
, t
(
a

3
,
a

3

)
= −2a

3

Then rt − s2 = a2

3
> 0, so

(
a
3
, a

3

)
is a local extremum point. As

r
(
a
3
, a

3

)
= −2a

3
< 0,

(
a
3
, a

3

)
is a local maximum for f .

Let us give a geometric interpretation of the above result (justifying

somehow the interest of the point
(
a
3
, a

3

)
). If x, y, z > 0 then xyz

can be thought as the volume of a parallelepiped of dimensions x, y, z.
Consider the functions f(x, y) = xy(a − x − y) only for x > 0, y >
0, a − x − y > 0, so f is defined on the open triangle T defined by
the points (0, 0), (a, 0), (0, a). We keep the notation f (although the
set of definition is changed). Now the geometric interpretation of f is:
f is the volume of a parallelepiped of dimensions x, y, a − x − y. But
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x + y + (a − x − y) = a, so all the parallelepipedes considered have
the same perimeter. A nice problem could be stated: from all the
parallelepipedes of a given perimeter find that one having maximum
volume.
We already know that

(
a
3
, a

3

)
is the only critical point of f in T and

we know it is a local maximum point (corresponding to the cube).
Can we declare this point to be the solution of the stated geometrical
problem ? For the moment no, simply because it is only a local max-
imum. But we can consider the function f on the closed triangle
T′: x ≥ 0, y ≥ 0, a − x − y ≥ 0. This time the geometric insight is
lost (at least one dimension could be 0), but T′ is a compact set so f
(being continuous) has a maximum value on T′. It is easy to see that
the maximum value is not to be reached on the sides, hence it is valued
at
(
a
3
, a

3

)
. So in fact the cube is the solution to our problem. The above

reasoning is a useful ”combination” of a local study (Fermat theorem,
open sets) with a global one (continuous functions on compact sets).

An important application of computing extrema of functions of sev-
eral variables is the following method to approximate functions of one
variable with affine functions.

The least squares method
Suppose that for a function f : I ⊆ IR 7→ IR the values at (distinct)
points x0, x1, ..., xp are known:

f(x0) = y0, f(x1) = y1, ..., f(xp) = yp

Generally, the points Mi(xi, yi) are not collinear, which means that
there are not a, b ∈ IR s.t. yi− axi− b = 0, ∀i = 0, 1, ..., p. Instead, we
look for a, b ∈ IR s.t. the sum of squares

p∑
i=0

(yi − axi − b)2

be as small as possible. More precisely, consider the function

E : IR2 7→ IR, E(a, b) =
p∑
i=0

(yi − axi − b)2
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The problem is to find the minima points of E. By using the above

algorithm, we first solve the system:
∂E

∂a
= 0,

∂E

∂b
= 0; the linear

system:
p∑
i=0

(yi − axi − b)xi = 0,
p∑
i=0

(yi − axi − b) = 0

has a unique solution (a0, b0). Now compute

r =
∂2E

∂a2
= 2

p∑
i=0

x2
i , s =

∂2E

∂a∂b
= 2

p∑
i=0

xi, t =
∂2E

∂b2
= 2(p+ 1)

Using Schwartz inequality it can be check rt − s2 > 0 and r > 0, so
(a0, b0) is a minimum point for E. The line y = a0x + b0 is called the
regression line of the data (x0, y0), (x1, y1), ..., (xp, yp).

Exercises

1. Let f(x, y) =

{
xy sin x2−y2

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
(i) Prove f is of class C1 on R2.
(ii) Prove that f has second order partial derivatives on R2 and compute
the mixed second order partial derivatives at the origin; is f of class C2

on R2 ?
Hint (i) The first order partial derivatives:

∂f

∂x
(x, y) =

{
y sin x2−y2

x2+y2
+ 4x2y3

(x2+y2)2
cos x2−y2

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

∂f

∂y
(x, y) =

{
x sin x2−y2

x2+y2
− 4y2x3

(x2+y2)2
cos x2−y2

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

It can be proved that f ∈ C1(IR2).
(ii) We have:

∂2f

∂x∂y
(0, 0) = lim

x→0

x sin 1

x
= sin 1;

∂2f

∂y∂x
(0, 0) = lim

y→0

y sin(−1)

y
= − sin 1.

So f is not of class C2 on R2.
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2. Same questions as above for f(x, y) =

{
xy3

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

3. For a function f ∈ C2(Ω), Ω an open non empty subset in IRn,
the Laplacian is by definition:

∆f =
∂2f

∂x2
1

+
∂2f

∂x2
2

+ ...+
∂2f

∂x2
n

.

A function with ∆f = 0 is said to be a harmonic function.
Prove the following are harmonic functions:
(i) f : R2 \ {(0, 0)} 7→ R, f(x, y) = ln(x2 + y2).

(ii) g : R3 \ {(0, 0, 0)} 7→ R, k(x, y, z) =
1√

x2 + y2 + z2
.

4. Let f ∈ C2(R2) and g : R2 7→ R, g(x, y) = f(x2 + y2, x2 − y2).
Compute the second order partial derivatives of g.
Hint Let u = x2 + y2 and v = x2 − y2; the partial derivatives of u and

v are :
∂u

∂x
= 2x,

∂u

∂y
= 2y,

∂v

∂x
= 2x,

∂v

∂y
= −2y. So we have:

∂g

∂x
=
∂f

∂u

∂u

∂x
+
∂f

∂v

∂v

∂x
= 2x

(
∂f

∂u
+
∂f

∂v

)

∂g

∂y
=
∂f

∂u

∂u

∂y
+
∂f

∂v

∂v

∂y
= 2y

(
∂f

∂u
− ∂f

∂v

)
.

The second order partial derivatives (g is of class C2(R2)):

∂2g

∂x2
=

∂

∂x

(
∂g

∂x

)
=

∂

∂x

(
2x

(
∂f

∂u
+
∂f

∂v

))
=

= 2

(
∂f

∂u
+
∂f

∂v

)
+ 2x

(
∂2f

∂u2

∂u

∂x
+

∂2f

∂v∂u

∂v

∂x
+

∂2f

∂u∂v

∂u

∂x
+
∂2f

∂v2

∂v

∂x

)
=

= 2

(
∂f

∂u
+
∂f

∂v

)
+ 4x2

(
∂2f

∂u2
+ 2

∂2f

∂u∂v
+
∂2f

∂v2

)
, etc.
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5. Let f(x, y) = ex sin y; write Taylor formula at (0, 0) using Lan-
dau notations.
Hint f(x, y) = y + xy + o(x2 + y2).

6. Write Taylor formula at (1, 1) using Landau notations for the
function f(x, y) = yx.
Hint f(x, y) = 1 + (y − 1) + (x− 1)(y − 1) + o((x− 1)2 + (y − 1)2).

7. Find the local extrema of the functions:
(i) f : R2 7→ R, f(x, y) = x3 + y3 − 6xy.
(ii) g : R2 7→ R, g(x, y) = x3 + 8y3 − 2xy.
Hint (i) The critical points of f are the solutions of the system:{

∂f
∂x

= 0
∂f
∂y

= 0
⇐⇒

{
3x2 − 6y = 0
3y2 − 6x = 0

We obtain two critical points: (0, 0) and (2, 2).
Now r(0, 0) = t(0, 0) = 0, s(0, 0) = −6, so (0, 0) is not an extremum
point and r(2, 2) = t(2, 2) = 12, s(2, 2) = −6, so (2, 2) is a local mini-
mum.

8. Find the local extrema points of f : R2 7→ R, f(x, y) = x2ye2x+3y.
Hint The set of critical points is {(0, y) | y ∈ R}∪{(−1,−1

3
)}. It is easy

to check (−1,−1
3
) is a local minimum. For (0, y) we obtain rt− s2 = 0,

so we need to evaluate the sign of

f(x, y)− f(0, y) = x2ye2x+3y.

The origin is not an extremum, while the points (0, y), y > 0 are local
minima and the points (0, y), y < 0 are local maxima.

9. Find the local extrema of the function:
f : (0, 2π)× (0, 2π) 7→ R, f(x, y) = sin x sin y sin(x+ y).
Hint The critical points:{

∂f
∂x

= cos x sin y sin(x+ y) + sin x sin y cos(x+ y) = sin y sin(2x+ y) = 0
∂f
∂y

= sin x cos y sin(x+ y) + sin x sin y cos(x+ y) = sinx sin(x+ 2y) = 0
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We obtain: (x1, y1) = (π, π) and (x2, y2) =
(
π
3
, π

3

)
.

Second order partial derivatives:

∂2f

∂x2
= 2 sin y cos(2x+ y),

∂2f

∂y2
= 2 sin x cos(x+ 2y),

∂2f

∂x∂y
= sin(2x+ 2y).

The point (x2, y2) is a local maximum:

rt− s2 =

=
∂2f

∂x2

(
π

3
,
π

3

)
∂2f

∂y2

(
π

3
,
π

3

)
−
(
∂2f

∂x∂y

(
π

3
,
π

3

))2

=
9

4
> 0, r = −

√
3 < 0.

For (x1, y1) = (π, π), we need to evaluate the sign of f(x, y)−f(π, π) =
sinx sin y sin(x+ y) in a neighborhood of (π, π). Finally, this is not an
extremum point.

10. Find the extrema of the functions:

(i) f(x, y, z) =
1

x
+
x

y
+
y

z
+ z, x 6= 0, y 6= 0, z 6= 0.

(ii) g : (0, π)3 7→ R, g(x, y, z) = sin x+ sin y + sin z − sin(x+ y + z).
Hint (i) The critical points are (1, 1, 1) and (−1, 1,−1). The hessian
of f :

Hh(x, y, z) =


2
x3 − 1

y2
0

− 1
y2

2x
y3

− 1
z2

0 − 1
z2

2y
z3


The point(1, 1, 1) is a local minimum (all the eigenvalues of the hessian
are strictly positive) and (−1, 1− 1) is a local maximum (all the eigen-
values of the hessian are strictly negative).
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4.3 Implicit functions, conditional extrema

and Lagrange multipliers

Implicit functions

Let f : IR2 7→ IR and consider the equation:

(?) f(x, y) = 0

Intuitively the set of the solutions of (?) defines a relation between x
and y. The problem is if this relation can take, at least locally, the form
of a functional dependence. This means that if, for example, f(a, b) = 0
is it possible to find (open) neighborhoods A of a and B of b and a func-
tion g : A 7→ B s.t the equality f(x, y) = 0, x ∈ A, y ∈ B be equivalent
to the equality y = g(x)? In this case we say that the function g is
implicitly defined by the equation (?). Loosely speaking one can
solve (?) with respect to the unknown y (as a function of x). In other
words in A× B the set of solutions of (?) is the graph of the function
g. Generally, it is the existence (and eventually, uniqueness) of g
which matters because finding g explicitly is (in most cases) impossible.

Example
Consider the equation x2 + y2 − 1 = 0 and a point (a, b), b > 0 s.t.
a2 + b2 − 1 = 0. Then it is obvious that the function g(x) =

√
1− x2

uniquely satisfies the above conditions in some neighborhood of a. But
for the point (1, 0) such neighborhoods are impossible to find.

Theorem (implicit function theorem for 2 variables)
Let f : IR2 7→ IR be a function of class C1 in a neighborhood of (a, b).
Suppose that:
(i) f(a, b) = 0
(ii) ∂f

∂y
(a, b) 6= 0.

Then there are open neighborhoods A of a and B of b and an unique
function g : A 7→ B of class C1 on A s.t:

x ∈ A, y ∈ B, f(x, y) = 0 iff y = g(x)

(it follows that g(a) = b).
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We omit the proof of this theorem (see [4], [5], [8]).

Although the function g cannot be found explicitly, it is possible to
compute its derivative. In fact we have that

f(x, g(x)) = 0, ∀x ∈ A

Differentiating with respect to x, we obtain:

f ′x(x, g(x)) + f ′y(x, g(x)) g′(x) = 0, ∀x ∈ A

In particular for x = a, y = b we have:

f ′x(a, b) + f ′y(a, b) g
′(a) = 0

As f ′y(a, b) 6= 0 we finally get:

g′(a) = −f
′
x(a, b)

f ′y(a, b)

Remark
In fact as f ′y(x, g(x)) 6= 0 in a neighborhood of a we obtain:

g′(x) = −f
′
x(x, g(x))

f ′y(x, g(x))
, in a neighborhood of a.

Example
Compute the extrema of the solutions y = y(x) of the equation:

x3 + y3 − 3xy = 0.

Hint Let f(x, y) = x3 + y3− 3xy. The function y = y(x) exists around
the points satisfying ∂f

∂y
6= 0, or 3y2 − 3x 6= 0. The derivative of y is:

3x2 + 3y2y′ − 3y − 3xy′ = 0 ⇒ y′(x) =
y − x2

y2 − x
.

The critical point of f are:
y′ = 0
f = 0
∂f
∂y
6= 0

⇒


y − x2 = 0

x3 + y3 − 3xy = 0
y2 − x 6= 0

.
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The only solution is (x, y) = ( 3
√

2, 3
√

4). We now compute y′′( 3
√

2):

2x+ 2y (y′)
2

+ y2y′ − y′ − y′ − xy′′ = 0, ⇒ y′′(
3
√

2) = −2 < 0,

so x = 3
√

2 is a local maximum point for y and y( 3
√

2) = 3
√

4.

We now state (without proof) the general form of the implicit func-
tion theorem.
First some notations: if f : IRn × IRm 7→ IRm, f = (f1, f2, ..., fm) and
x ∈ IRn, y ∈ IRm. Suppose f is differentiable at (a, b) ∈ IRn×IRm, (a ∈
IRn, b ∈ IRm). Define f ′y(a, b) by the matrix:

∂f1
∂y1

(a, b) . . . . ∂f1
∂ym

(a, b)

. . . . . .
∂fm
∂y1

(a, b) . . . . ∂fm
∂yn

(a, b)


Theorem (general implicit function theorem)

Let f : IRn× IRm 7→ IRm be a function of class C1 in a neighborhood of
(a, b) ∈ IRn × IRm. Suppose:
(i) f(a, b) = 0
(ii) det f ′y(a, b) 6= 0.
Then there are open neighborhoods A of a and B of b and an unique
function g : A 7→ B of class C1 s.t.

for x ∈ A, y ∈ B, f(x, y) = 0 iff y = g(x).

In the example below we show how derivatives can be computed in
the case n = 1, m = 2.

Example
Let f : IR × (IR \ {0}) × IR 7→ IR2, f(x, y, z) = (f1(x, y, z), f2(x, y, z)) ,
where:

f1(x, y, z) = yz + 2y2 + xy + y + z − 2,

f2(x, y, z) = arctan
z

y
+ ln

x2 + 2y2 + z2

2

The system of two equations f = (0, 0) defines implicitly two functions
y = y(x) and z = z(x). Let first observe that f(0, 1, 0) = (0, 0); in
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the above notations, a = 0, b = (1, 0), x1 = x, (y1, y2) = (y, z). The
problem is to compute y′(0) and z′(0).
First we check the condition∣∣∣∣∣∣∣∣

∂f1
∂y

(0, 1, 0) ∂f1
∂z

(0, 1, 0)

∂f2
∂y

(0, 1, 0) ∂f2
∂z

(0, 1, 0)

∣∣∣∣∣∣∣∣ = 1 6= 0

is fulfilled, so the functions y and z exist around x = 0 and
y(0) = 1, z(0) = 0. By differentiating the system with respect to x we
obtain (y and z are functions of x):

y′z + yz′ + y + xy′ + y′ + z′ = 0

yz′ − y′z
y2 + z2

+
2x+ 2zz′ + 4yy′

x2 + 2y2 + z2
= 0

For x = 0, y = 1, z = 0 we obtain the system:

y′(0) + z′(0) = −1, 2y′(0) + z′(0) = 0

We finally get: y′(0) = 1 and z′(0) = −2.

Conditional extrema

Let f : IRn 7→ IR and M ⊆ IRn a non empty set. The point a ∈ M
is a local conditional extremum for f with constraint M if there is
an open ball B(a, r) s.t. f(x)− f(a) ≥ 0 (or ≤ 0) on B(a, r)

⋂
M

The set M being not necessarily open, Fermat theorem cannot be ap-
plied to conditional local extrema. Instead, a version of Fermat theorem
(called Lagrange multipliers theorem) is valid (for the proof, see [4], [5]):

Theorem (Lagrange multipliers)
Let g : IRn × IRm 7→ IRm, g = (g1, g2, ..., gm) and let

M = {(x, y) ∈ IRn × IRm ; g(x, y) = 0}

Let f : IRn × IRm 7→ IR and (a, b) ∈M be s.t:
(i) f and g are of class C1 in a neighborhood of (a, b).
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(ii) (a, b) is a local conditional extremum for f constrained by M ;
(iii) det g′y(a, b) 6= 0.
Then there are (unique) λ1, λ2, ..., λm ∈ R (called Lagrange multi-
pliers ) s.t. the function F = f +λ1g1 +λ2g2 + ...+λmgm satisfies the
conditions:

∂F

∂xi
(a, b) = 0,

∂F

∂yj
(a, b) = 0, i = 1, 2, ..., n, j = 1, 2, ...,m

To apply this theorem (we suppose the hypothesis are fulfilled) one
proceeds as follows:

(i) Form the function F = f +
m∑
k=1

λkgk (with unknowns λ1, λ2, ..., λm).

(ii) Solve the system:

∂F

∂xi
(x, y) = 0,

∂F

∂yj
(x, y) = 0, gk(x, y) = 0, i = 1, 2, ..., n, j, k = 1, 2, ...,m

There are n+ 2m equations and n+ 2m unknowns:

x = (x1, ..., xn), y = (y1, ..., ym), λ = (λ1, ..., λm)

(iii) For every solution (λ, x, y), the point (x, y) is a possible local con-
ditional extremum.

Example
Let f : IR2 7→ IR, f(x, y) = x+y and g : IR2 7→ IR, g(x, y) = x2+y2−1.
We want to compute the maximum and minimum values of f on
M = {(x, y) ∈ IR2 ; g(x, y) = 0}.
Solution First observe that:
(i) the problem has solutions (f is continuous and the constrain M is
compact).
(ii) the equation g(x, y) = 0 satisfies implicit function theorem at every
point (with respect to x or to y).
So one can use Lagrange multipliers theorem to find the local condi-
tional extrema candidates; then decide the maximum and the mini-
mum.
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Define F (x, y) = x+ y + λ(x2 + y2 − 1); the system:

∂F
∂x

(x, y) = 1 + 2λx = 0

∂F
∂y

(x, y) = 1 + 2λy = 0

g(x, y) = x2 + y2 − 1 = 0

has the solutions:
λ1 =

√
2

2
, x1 = −

√
2

2
, y1 = −

√
2

2
and λ2 = −

√
2

2
, x2 =

√
2

2
, y2 =

√
2

2

So being exactly two local conditional extrema candidates, they are the
points where f attains its extreme values:

inf
M
f = f(x1, y1) = −

√
2, sup

M
f = f(x2, y2) =

√
2

We shall not consider the problem of finding sufficient conditions
for local conditional extrema (see [1], [7]).

Exercises

1. Find the extrema of the solutions y = y(x) defined by the equa-
tion x3 + y3 − 2xy = 0.
Hint Let f(x, y) = x3 + y3− 2xy; the condition ∂f

∂y
6= 0 is 3y2− 2x 6= 0.

If this condition is fulfilled we compute the derivative of y = y(x):

3x2 + 3y2y′ − 2y − 2xy′ = 0 ⇒ y′(x) =
2y − 3x2

3y2 − 2x
.

Now compute the critical points, etc.

2. Find the extrema of the solutions y = y(x) defined by the equa-
tion x3 + y3 − 3x2y − 3 = 0.

3. The function z = z(x, y) is implicitly defined by the equation:

(y + z) sin z − y(x+ z) = 0.
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Compute:

E = (z sin z)
∂z

∂x
− y2∂z

∂y
.

Hint Let f(x, y, z) = (y+z) sin z−y(x+z). The hypothesis of implicit
function theorem is:

sin z + (y + z) cos z − y 6= 0.

By differentiating with respect to x and y we obtain:

∂z

∂x
sin z + (y + z) cos z

∂z

∂x
− y

(
1 +

∂z

∂x

)
= 0,

so:
∂z

∂x
=

y

sin z + (y + z) cos z − y
.

(
1 +

∂z

∂y

)
sin z + (y + z) cos z

∂z

∂y
− (x+ z)− y∂z

∂y
= 0,

so
∂z

∂y
=

x+ z − sin z

sin z + (y + z) cos z − y
.

Replacing ∂z
∂x

and ∂z
∂y

in E we obtain:

E =
yf(x, y, z)

sin z + (y + z) cos z − y
= 0.

4. Compute the extrema of z = z(x, y), implicitly defined by the
equation: z3 + z + 20(x2 + y2)− 8(xy + x+ y) = 0.
Hint Let f(x, y, z) = z3 + z + 20(x2 + y2)− 8(xy+ x+ y); the implicit
function theorem can be applied at every (x, y, z) ∈ IR3. The first order
partial derivatives of z:

3z2 ∂z

∂x
+
∂z

∂x
+ 40x− 8(y + 1) = 0⇒ ∂z

∂x
=

8(y + 1)− 40x

3z2 + 1
.

3z2∂z

∂y
+
∂z

∂y
+ 40y − 8(x+ 1) = 0⇒ ∂z

∂y
=

8(x+ 1)− 40y

3z2 + 1
.
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The critical points of z are the solutions of the system:
∂z
∂x

= 0
∂z
∂y

= 0

f(x, y, z) = 0

⇒


8(y+1)−40x

3z2+1
= 0

8(x+1)−40y
3z2+1

= 0

z3 + z + 20(x2 + y2)− 8(xy + x+ y) = 0

The unique critical point is (x, y, z) = (1
4
, 1

4
, 1). The second order par-

tial derivatives of z:

6z

(
∂z

∂x

)2

+ 3z2 ∂
2z

∂x2
+
∂2z

∂x2
+ 40 = 0 ⇒ ∂2z

∂x2
= − 40

3z2 + 1
.

6z

(
∂z

∂y

)2

+ 3z2∂
2z

∂y2
+
∂2z

∂y2
+ 40 = 0 ⇒ ∂2z

∂y2
= − 40

3z2 + 1
.

6z
∂z

∂y

∂z

∂x
+ 3z2 ∂2z

∂x∂y
+

∂2z

∂x∂y
− 8 = 0 ⇒ ∂2z

∂x∂y
=

8

3z2 + 1
.

We get: ∂2z
∂x2

(
1
4
, 1

4

)
= −10, ∂

2z
∂y2

(
1
4
, 1

4

)
= −10, ∂2z

∂x∂y

(
1
4
, 1

4

)
= 2, so (1

4
, 1

4
)

is a local maximum point for z.

5. Compute y′(1), y being the solution of the equation

x3 − y − cos y = 0, with y(1) = 0.

6. Compute y′(0) and y′′(0), if y(0) = 0 and

ex
2−y2 = sin(x+ 2y) + 1.

7. Compute y′ and y′′ if y = x+ ln y. (Make this more precise).

8. Compute ∂z
∂x

and ∂z
∂y

if: x cos y + y cos z + z cosx = 1.

9. Compute the extreme values of f(x, y) = 2x2 + 2y2 + 2x on the
set D′ = {(x, y) ∈ IR2 ; x2 + y2 ≤ 1}.
Hint We observe the problem has solutions (as f is continuous and D′

is compact). We solve the problem in two steps: first we find the local
(unconditional, free) extrema on the open unit disk and then we find
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the local conditional extrema on the unit circle. For the first step we
compute the critical points of f :

∂f

∂x
= 4x+ 2 = 0,

∂f

∂y
= 4y = 0,

so there is only one critical point
(
−1

2
, 0
)
.

Now r = 4, t = 4, s = 0, so
(
−1

2
, 0
)

is a local minimum point and

f
(
−1

2
, 0
)

= −1
2
.

For the second step we consider F (x, y) = 2x2+2y2+2x+λ(x2+y2−1).
The system: 

∂F
∂x

(x, y) = 2(x(λ+ 2) + 1) = 0

∂F
∂y

(x, y) = 2y(λ+ 2) = 0

g(x, y) = x2 + y2 − 1 = 0

has the solutions:
λ1 = −1, x1 = −1, y1 = 0 and λ2 = 1, x2 = 1, y2 = 0.
By comparing the values of f we find:

f
(
−1

2
, 0
)

= −1

2
, f(−1, 0) = 0, f(1, 0) = 4,

so inf
D′
f = −1

2
and sup

D′
f = 4

10. Compute the extreme values of f(x, y) = xy on the ellipse of
equation x2 + 2y2 = 1.
Hint Using Lagrange multipliers method we consider
F (x, y) = xy + λ(x2 + 2y2 − 1). We finally obtain (the constrain is
compact !):

inf f = −
√

2
4

and sup f =
√

2
4
.

11. Let f(x, y) = x2 + y2 − xy + x + y. Compute inf
K
f and sup

K
f ,

if K = {(x, y) ∈ IR2 ; x ≤ 0, y ≤ 0, x+ y ≥ −3}.
Hint Same method as in exercise 9. Inside the triangle we have the
critical point (−1,−1) with f(−1,−1) = −1. On the edges of the tri-
angle we have 3 cases: on x = 0, on y = 0 and on x+ y = −3, etc.
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